Efectividad de la suplementación nutricional con polifenoles sobre el daño muscular y marcadores de estrés oxidativo en diferentes tipos de ejercicios físicos: Una revisión de la literatura.
Resumen
Durante la realización de ejercicio, existe un desbalance redox que aumenta las especies reactivas de oxígeno generando un estrés oxidativo que favorece el daño muscular incidiendo en el rendimiento físico y deportivo. Diferentes suplementos antioxidantes han sido utilizados para optimizar la recuperación muscular posterior a la realización de ejercicio físico. Sin embargo, los efectos de diversos antioxidantes han sido contraproducentes, ya que las especies reactivas de oxígeno generadas por el ejercicio son necesarias para la adaptación muscular y la disminución de éstas, impide la correcta señalización intracelular y con esto, la adaptación del músculo esquelético frente al ejercicio físico. Los polifenoles son un tipo de antioxidantes que están presentes en diversos frutos y extractos de hierbas que poseen diversas características dependiendo de su estructura y composición, presentando algunos una ruta de señalización celular similar al ejercicio físico, generando diferentes estímulos a nivel del músculo esquelético, pudiendo reducir el daño oxidativo generado por el ejercicio e incluso, pudiendo potenciar sus efectos. El objetivo de la presente revisión a la literatura es determinar y describir el efecto de diversos polifenoles en el daño muscular y marcadores de estrés oxidativo posterior a diferentes modalidades de ejercicio físico y deportes en adultos.
Descargas
Citas
Abd Hamid, N. A., Hasrul, M. A., Ruzanna, R. J., Ibrahim, I. A., Baruah, P. S., Mazlan, M., Wan Ngah, W. Z. (2011). Effect of vitamin e (Tri E®) on antioxidant enzymes and DNA damage in rats following eight weeks exercise. Nutrition Journal, 10(1), 1–7. https://doi.org/10.1186/1475-2891-10-37
Beyer, K. S., Stout, J. R., Fukuda, D. H., Jajtner, A. R., Townsend, J. R., Church, D. D., Hoffman, J. R. (2017). Impact of polyphenol supplementation on acute and chronic response to resistance training. Journal of Strength and Conditioning Research, 31(11), 2945–2954. https://doi.org/10.1519/JSC.0000000000002104
Bogdanis, G. C., Stavrinou, P., Fatouros, I. G., Philippou, A., Chatzinikolaou, A., Draganidis, D., … Maridaki, M. (2013). Short-term high-intensity interval exercise training attenuates oxidative stress responses and improves antioxidant status in healthy humans. Food and Chemical Toxicology, 61, 171–177. https://doi.org/10.1016/j.fct.2013.05.046
de Lima Tavares Toscano, L., Silva, A. S., de França, A. C. L., de Sousa, B. R. V., de Almeida Filho, E. J. B., da Silveira Costa, M., Marques, A. T. B., da Silva, D. F., de Farias Sena, K., Cerqueira, G. S., & da Conceição Rodrigues Gonçalves, M. (2020). A single dose of purple grape juice improves physical performance and antioxidant activity in runners: a randomized, crossover, double-blind, placebo study. European Journal of Nutrition, 59(7), 2997–3007. https://doi.org/10.1007/s00394-019-02139-6
Brito, R., Castillo, G., González, J., Valls, N., & Rodrigo, R. (2015). Oxidative stress in hypertension: Mechanisms and therapeutic opportunities. Experimental and Clinical Endocrinology and Diabetes, 123(6), 325–335. https://doi.org/10.1055/s-0035-1548765
Checa, J., & Aran, J. M. (2020). Reactive oxygen species: Drivers of physiological and pathological processes. Journal of Inflammation Research, 13, 1057–1073. https://doi.org/10.2147/JIR.S275595
da Silva, W., Machado, Á. S., Souza, M. A., Mello-Carpes, P. B., & Carpes, F. P. (2018). Effect of green tea extract supplementation on exercise-induced delayed onset muscle soreness and muscular damage. Physiology and Behavior, 194(2017), 77–82. https://doi.org/10.1016/j.physbeh.2018.05.006
De Figueiredo, A. S. P., Salmon, A. B., Bruno, F., Jimenez, F., Martinez, H. G., Halade, G. V., El Jamali, A. (2015). Nox2 mediates skeletal muscle insulin resistance induced by a high fat diet. Journal of Biological Chemistry, 290(21), 13427–13439. https://doi.org/10.1074/jbc.M114.626077
de Lima Tavares Toscano, L., Silva, A. S., de França, A. C. L., de Sousa, B. R. V., de Almeida Filho, E. J. B., da Silveira Costa, M., … da Conceição Rodrigues Gonçalves, M. (2020). A single dose of purple grape juice improves physical performance and antioxidant activity in runners: a randomized, crossover, double-blind, placebo study. European Journal of Nutrition, 59(7), 2997–3007. https://doi.org/10.1007/s00394-019-02139-6
Díaz-Vegas, A., Campos, C. A., Contreras-Ferrat, A., Casas, M., Buvinic, S., Jaimovich, E., & Espinosa, A. (2015). ROS production via P2Y1-PKC-NOX2 is triggered by extracellular ATP after electrical stimulation of skeletal muscle cells. PLoS ONE, 10(6), 1–14. https://doi.org/10.1371/journal.pone.0129882
Espinosa, A., Henríquez-Olguín, C., & Jaimovich, E. (2016). Reactive oxygen species and calcium signals in skeletal muscle: A crosstalk involved in both normal signaling and disease. Cell Calcium, 60(3), 172–179. https://doi.org/10.1016/j.ceca.2016.02.010
Feng, X., Yu, W., Li, X., Zhou, F., Zhang, W., Shen, Q., … Shen, P. (2017). Apigenin, a modulator of PPARγ, attenuates HFD-induced NAFLD by regulating hepatocyte lipid metabolism and oxidative stress via Nrf2 activation. Biochemical Pharmacology, 136, 136–149. https://doi.org/10.1016/j.bcp.2017.04.014
Forman, H. J., Maiorino, M., & Ursini, F. (2010). Signaling functions of reactive oxygen species. Biochemistry, 49(5), 835–842. https://doi.org/10.1021/bi9020378
Gacitua, T., Karachon, L., Romero, E., Parra, P., Poblete, C., Russell, J., & Rodrigo, R. (2018). Effects of resistance training on oxidative stress-related biomarkers in metabolic diseases: a review. Sport Sciences for Health, 14(1). https://doi.org/10.1007/s11332-017-0402-5
Gomez-Cabrera, M. C., Domenech, E., Romagnoli, M., Arduini, A., Borras, C., Pallardo, F. V. Viña, J. (2008). Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. American Journal of Clinical Nutrition, 87(1), 142–149. https://doi.org/10.1093/ajcn/87.1.142
Hadi, A., Pourmasoumi, M., Kafeshani, M., Karimian, J., Maracy, M. R., & Entezari, M. H. (2017). The Effect of Green Tea and Sour Tea (Hibiscus sabdariffa L.) Supplementation on Oxidative Stress and Muscle Damage in Athletes. Journal of Dietary Supplements, 14(3), 346–357. https://doi.org/10.1080/19390211.2016.1237400
Hawley, J. A., Hargreaves, M., Joyner, M. J., & Zierath, J. R. (2014). Integrative biology of exercise. Cell, 159(4), 738–749. https://doi.org/10.1016/j.cell.2014.10.029
Herrlinger, K. A., Chirouzes, D. M., & Ceddia, M. A. (2015). Supplementation with a polyphenolic blend improves post-exercise strength recovery and muscle soreness. Food and Nutrition Research, 59. https://doi.org/10.3402/fnr.v59.30034
Hey-Mogensen M, Højlund K, Vind BF, et al. (2010). Effect of physical training on mitochondrial respiration and reactive oxygen species release in skeletal muscle in patients with obesity and type 2 diabetes. Diabetologia, 53, 1976-1985. https://doi.org/10.1007/s00125-010-1813-x
Hooper, D. R., Orange, T., Gruber, M. T., Darakjian, A. A., Conway, K. L., & Hausenblas, H. A. (2021). Broad Spectrum Polyphenol Supplementation from Tart Cherry Extract on Markers of Recovery from Intense Resistance Exercise. Journal of the International Society of Sports Nutrition, 18(1), 1–9. https://doi.org/10.1186/s12970-021-00449-x
Huang, H., Lai, S., Luo, Y., Wan, Q., Wu, Q., Wan, L., … Liu, J. (2019). Nutritional preconditioning of apigenin alleviates myocardial ischemia/reperfusion injury via the mitochondrial pathway mediated by Notch1/Hes1. Oxidative Medicine and Cellular Longevity, 2019. https://doi.org/10.1155/2019/7973098
Jówko, E., Długołęcka, B., Makaruk, B., & Cieśliński, I. (2015). The effect of green tea extract supplementation on exercise-induced oxidative stress parameters in male sprinters. European Journal of Nutrition, 54(5), 783–791. https://doi.org/10.1007/s00394-014-0757-1
Jówko, E., Sacharuk, J., Balasińska, B., Ostaszewski, P., Charmas, M., & Charmas, R. (2011). Green tea extract supplementation gives protection against exercise-induced oxidative damage in healthy men. Nutrition Research, 31(11), 813–821. https://doi.org/10.1016/j.nutres.2011.09.020
Jówko, E., Sacharuk, J., Balasinska, B., Wilczak, J., Charmas, M., Ostaszewski, P., & Charmas, R. (2012). Effect of a single dose of green tea polyphenols on the blood markers of exercise-induced oxidative stress in soccer players. International Journal of Sport Nutrition and Exercise Metabolism, 22(6), 486–496. https://doi.org/10.1123/ijsnem.22.6.486
Kashi, D. S., Shabir, A., Da Boit, M., Bailey, S. J., & Higgins, M. F. (2019). The Effcacy of administering fruit-derived polyphenols to improve health biomarkers, exercise performance and related physiological responses. Nutrients, 11(10), 1–13. https://doi.org/10.3390/nu11102389
Korsager Larsen, M., & Matchkov, V. V. (2016). Hypertension and physical exercise: The role of oxidative stress. Medicina (Lithuania), 52(1), 19–27. https://doi.org/10.1016/j.medici.2016.01.005
Le Lay, S., Simard, G., Martinez, M. C., & Andriantsitohaina, R. (2014). Oxidative stress and metabolic pathologies: From an adipocentric point of view. Oxidative Medicine and Cellular Longevity, 2014. https://doi.org/10.1155/2014/908539
Lee, M. C., Hsu, Y. J., Ho, C. S., Chang, C. H., Liu, C. W., Huang, C. C., & Chiang, W. D. (2021). Evaluation of the efficacy of supplementation with planox® lemon verbena extract in improving oxidative stress and muscle damage: A double-blind controlled trial. International Journal of Medical Sciences, 18(12), 2641–2652. https://doi.org/10.7150/ijms.60726
Macedo, R. C. S., Vieira, A., Marin, D. P., & Otton, R. (2015). Effects of chronic resveratrol supplementation in military firefighters undergo a physical fitness test - A placebo-controlled, double blind study. Chemico-Biological Interactions, 227, 89–95. https://doi.org/10.1016/j.cbi.2014.12.033
Machado, Á. S., da Silva, W., Souza, M. A., & Carpes, F. P. (2018). Green tea extract preserves neuromuscular activation and muscle damage markers in athletes under cumulative fatigue. Frontiers in Physiology, 9, 1–9. https://doi.org/10.3389/fphys.2018.01137
Malaguti, M., Angeloni, C., & Hrelia, S. (2013). Polyphenols in exercise performance and prevention of exercise-induced muscle damage. Oxidative Medicine and Cellular Longevity, 825928. https://doi.org/10.1155/2013/825928
Martins, N. C., Dorneles, G. P., Blembeel, A. S., Marinho, J. P., Proença, I. C. T., da Cunha Goulart, M. J. V., … Ribeiro, J. L. (2020). Effects of grape juice consumption on oxidative stress and inflammation in male volleyball players: A randomized, double-blind, placebo-controlled clinical trial. Complementary Therapies in Medicine, 54. https://doi.org/10.1016/j.ctim.2020.102570
Merry, T. L., & Ristow, M. (2016). Mitohormesis in exercise training. Free Radical Biology and Medicine, 98, 123–130. https://doi.org/10.1016/j.freeradbiomed.2015.11.032
Paulsen, G., Cumming, K. T., Holden, G., Hallén, J., Rønnestad, B. R., Sveen, O., … Raastad, T. (2014). Vitamin C and E supplementation hampers cellular adaptation to endurance training in humans: A double-blind, randomised, controlled trial. Journal of Physiology, 592(8), 1887–1901. https://doi.org/10.1113/jphysiol.2013.267419
Pisoschi, A. M., & Pop, A. (2015). The role of antioxidants in the chemistry of oxidative stress: A review. European Journal of Medicinal Chemistry, 97, 55–74. https://doi.org/10.1016/j.ejmech.2015.04.040
Ristow, M., & Schmeisser, K. (2014). Mitohormesis: Promoting health and lifespan by increased levels of reactive oxygen species (ROS). Dose-Response, 12(2), 288–341. https://doi.org/10.2203/dose-response.13-035.Ristow
Rodrigo, R., Brito, R., González-Montero, J., & Benedetti, V. (2017). Antioxidants in human disease: Potential therapeutic opportunities. Clinical Pharmacology and Translational Medicine, 1(2), 44–53.
Rodrigo, R., Prat, H., Passalacqua, W., Araya, J., & Bächler, J. P. (2008). Decrease in oxidative stress through supplementation of vitamins C and E is associated with a reduction in blood pressure in patients with essential hypertension. Clinical Science, 114(9–10), 625–634. https://doi.org/10.1042/CS20070343
Silva, W., Machado, Á. S., Souza, M. A., & Carpes, F. P. (2018). Effect of green tea extract supplementation on exercise- idnuced delayed onset muscle soreness and muscular damage. Physiology, 194, 77–82. https://doi.org/10.1016/j.physbeh.2018.05.006
Steinbacher, P., & Eckl, P. (2015). Impact of oxidative stress on exercising skeletal muscle. Biomolecules, 5(2), 356–377. https://doi.org/10.3390/biom5020356
Teixeira-Lemos, E., Nunes, S., Teixeira, F., & Reis, F. (2011). Regular physical exercise training assists in preventing type 2 diabetes development: Focus on its antioxidant and anti-inflammatory properties. Cardiovascular Diabetology, 10, 1–15. https://doi.org/10.1186/1475-2840-10-12
Toscano, L. T., Tavares, R. L., Toscano, L. T., da Silva, C. S. O., de Almeida, A. E. M., Biasoto, A. C. T., Silva, A. S. (2015). Potential ergogenic activity of grape juice in runners. Applied Physiology, Nutrition and Metabolism, 40(9), 899–906. https://doi.org/10.1139/apnm-2015-0152
Las obras que se publican en esta revista están sujetas a los siguientes términos:
1. El Servicio de Publicaciones de la Universidad de Murcia (la editorial) conserva los derechos patrimoniales (copyright) de las obras publicadas, y favorece y permite la reutilización de las mismas bajo la licencia de uso indicada en el punto 2.
© Servicio de Publicaciones, Universidad de Murcia, 2013
2. Las obras se publican en la edición electrónica de la revista bajo una licencia Creative Commons Reconocimiento-NoComercial-SinObraDerivada 3.0 España (texto legal). Se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que: i) se cite la autoría y la fuente original de su publicación (revista, editorial y URL de la obra); ii) no se usen para fines comerciales; iii) se mencione la existencia y especificaciones de esta licencia de uso.
3. Condiciones de auto-archivo. Se permite y se anima a los autores a difundir electrónicamente las versiones pre-print (versión antes de ser evaluada) y/o post-print (versión evaluada y aceptada para su publicación) de sus obras antes de su publicación, ya que favorece su circulación y difusión más temprana y con ello un posible aumento en su citación y alcance entre la comunidad académica.