Análisis textual y del sentimiento en contabilidad
Textual Analysis and Sentiment Analysis in Accounting
Resumen
A pesar del relativamente escaso uso de técnicas de análisis textual y de análisis del sentimiento en finanzas y contabilidad, éstas tienen un gran potencial en contabilidad, tanto por el elevado volumen de documentos utilizados para la comunicación de información financiera como por el crecimiento en el uso de herramientas digitales y medios de comunicación social. En este sentido, estas técnicas de análisis pueden ayudar a los investigadores a analizar pistas ocultas o buscar información adicional a la observada a través de los estados financieros, incrementando la cantidad y calidad de la información tradicionalmente utilizada, y proporcionando una nueva perspectiva de análisis. Por ello, el objetivo de este estudio es realizar una revisión del uso del análisis textual y del análisis del sentimiento en contabilidad. Tras presentar los conceptos de análisis textual y análisis del sentimiento y justificar teóricamente su papel en la investigación en contabilidad, llevamos a cabo una revisión de la literatura previa en el uso de estas técnicas en finanzas y contabilidad y describimos las principales técnicas de análisis del sentimiento, así como el procedimiento a seguir para el uso de esta metodología. Finalmente, sugerimos tres líneas de investigación futura que pueden beneficiarse del uso del análisis textual y del análisis del sentimiento.
Descargas
Citas
Abrahamson, E., & Amir, E. (1996). The information content of the president's letter to shareholders. Journal of Business, Finance and Accounting, 23(8), 1157-1181. https://doi.org/10.1111/j.1468-5957.1996.tb01163.x.
Alcaide Muñoz, L., Rodríguez Bolívar, M.P., & Sánchez, R.G. (2014). Estudio cienciométrico de la investigación en transparencia informativa, participación ciudadana y prestación de servicios públicos mediante la implementación del e-gobierno. Revista de Contabilidad -- Spanish Accounting Review, 17(2), 130-142. https://doi.org/10.1016/j.rcsar.2014.05.001
Allee, K.D., & DeAngelis, M.D. (2015). The structure of voluntary disclosure narratives: Evidence from tone dispersion. Journal of Accounting Research, 53(2), 241-274. https://doi.org/10.1111/1475-679X.12072
Amani, F. A., & Fadlalla, A. M. (2017). Data mining applications in accounting: A review of the literature and organizing framework. International Journal of Accounting Information Systems, 24, 32-58. https://doi.org/10.1016/j.accinf.2016.12.004
Amernic, J., Craig, R., & Tourish, D. (2010). Measuring and assessing tone at the top using annual report CEO letters. The Institute of Chartered Accountants of Scotland. https://researchportal.port.ac.uk/portal/en/publications/measuring%2dand%2dassessing%2dtone%2dat%2dthe%2dtop%2dusing%2dannual%2dreport%2dceo%2dletters(5f009fa3%2d76fe%2d441f%2d91c3%2dc8535273d71f).html
Antweiler, W., & Frank, M.Z. (2004). Is all that talk just noise? The information content of Internet stock message boards. The Journal of Finance, 59(3), 1259-1294. https://doi.org/10.1111/j.1540-6261.2004.00662.x
Asay, H.S., Elliott, W.B., & Rennekamp, K. (2017). Disclosure readability and the sensitivity of investors' valuation judgments to outside information. The Accounting Review, 92(4), 1-25. https://doi.org/10.2308/accr-51570
Asay, H.S., Libby, R., & Rennekamp, K. (2018). Firm performance, reporting goals, and language choices in narrative disclosures. Journal of Accounting and Economics, 65(2-3), 380-398. https://doi.org/10.1016/j.jacceco.2018.02.002
Baker, M., & Wugler, J. (2007). Investor sentiment in the stock market. Journal of Economic Perspectives, 21(2), 129-151. https://doi.org/10.3386/w13189
Ball, C., Hoberg, G., & Maksimovic, V. (2015). Disclosure, business change and earnings quality. Working Paper. Available at SSRN: https://ssrn.com/abstract=2260371.
Barkemeyer, R., Comyns, B., Figge, F., & Napolitano, G. (2014). CEO statements in sustainability reports: Substantive information or background noise? Accounting Forum, 38(4), 241-257. https://doi.org/10.1016/j.accfor.2014.07.002
Barron, E.E., Kile, C.O., O'keefe, T.B. (1999). MD&A quality as measured by the SEC and analysts' earnings forecasts. Contemporary Accounting Research, 16(1), 75-109. https://doi.org/10.1111/j.1911-3846.1999.tb00575.x
Bharath, S.T., Sunder, J., & Sunder, S.V. (2008). Accounting quality and debt contracting. The Accounting Review, 83(1), 1-28. https://doi.org/10.2139/ssrn.591342
Blei, D.M., Ng, A. Y., & Jordan, M.I. (2003). Latent Dirichlet Allocation. Journal of Machine Learning Research, 3(Jan), 993-1022.
Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of Computational Science, 2(1), 1-8. https://doi.org/10.1016/j.jocs.2010.12.007
Bonsall, S.B., Leone, A.J., Miller, B.P., & Rennekamp, K. (2017). A plain English measure of financial reporting readability. Journal of Accounting and Economics, 63(2-3), 329-357. https://doi.org/10.1016/j.jacceco.2017.03.002
Bonsón, E., & Flores, F. (2011). Social media and corporate dialogue: The response of the global financial institutions. Online Information Review, 35(1), 34-49. https://doi.org/10.1108/14684521111113579
Bonsón, E., Royo, S., & Ratkai, M. (2015). Citizen's engagement on local governments' Facebook sites. An empirical analysis: The impact of different media and content types in Western Europe. Government Information Quarterly, 32(1), 52-62. https://doi.org/10.1016/j.giq.2014.11.001
Bonsón, E., Torres, L., Royo, S., & Flores, F. (2012). Local e-government 2.0: Social media and corporate transparency in municipalities. Government Information Quarterly, 29(2), 123-132. https://doi.org/10.1016/j.giq.2011.10.001
Boudoukh, J., Feldman, R., Kogan, S., & Richardson, M. (2019). Information, trading and volatility: Evidence from firm-specific news. The Review of Financial Studies, 32(3), 992-1033. https://doi.org/10.1093/rfs/hhy083
Brown, S., Hillegeist, S.A., & Lo, K. (2004). Conference calls and information asymmetry. Journal of Accounting and Economics, 37(3), 343-366. https://doi.org/10.1016/j.jacceco.2004.02.001
Brown, S.V., & Tucker, J.W. (2011). Large-sample evidence on firms' year-over-year MD&A modifications. Journal of Accounting Research, 49(2), 309-346. https://doi.org/10.1111/j.1475-679X.2010.00396.x
Bryan, S.H. (1997). Incremental information content of required disclosures contained in Management Discussion and Analysis. The Accounting Review, 72(2), 285-301.
Buehlmaier, M.M.M., & Whited, T.M. (2018). Are financial constraints priced? Evidence from textual analysis. The Review of Financial Studies, 31(7), 2693-2728. https://doi.org/10.1093/rfs/hhy007
Bushee, B.J., Matsumoto, D.A., & Miller, G.S. (2003). Open versus closed conference calls: The determinants and effects of broadening access to disclosure. Journal of Accounting and Economics, 34, 149-180. https://doi.org/10.1016/S0165-4101(02)00073-3
Bushee, B.J., Matsumoto, D.A., & Miller, G.S. (2004). Managerial and investor responses to disclosure regulation: The case of Reg FD and conference calls. Journal of Accounting Reseach, 79(3), 617-643. https://doi.org/10.2139/ssrn.310233
Cecchini, M., Aytug, H., Koehler, G.J., & Pathak, P. (2010). Detecting management fraud in public companies. Management Science, 56(7), 1146-1160. https://doi.org/10.1287/mnsc.1100.1174
Chakraborty, V., Chiu, V., & Vasarhelyi, M. (2014). Automatic classification of accounting literature. International Journal of Accounting Information Systems, 15(2), 122-148. https://doi.org/10.1016/j.accinf.2014.01.001
Chen, H., De, P., Hu, J., & Wang, B.H. (2014). Wisdom of crowds: The value of stock opinions transmitted through social media. The Review of Financial Studies, 27(5), 1367-1403. https://doi.org/10.1093/rfs/hhu001
Chen, Y.J., Wu, C.H., Chen, Y.M., Li, H.Y., & Chen, H.K. (2017). Enhancement of fraud detection for narratives in annual reports. International Journal of Accounting Information Systems, 26(1), 32-45. https://doi.org/10.1016/j.accinf.2017.06.004
Cho, C.H., Roberts, R.W., & Patten, D.M. (2010). The language of US corporate environmental disclosure. Accounting, Organizations and Society, 35(4), 431-443. https://doi.org/10.1016/j.aos.2009.10.002
Clatworthy, M., & Jones, M.J. (2003). Financial reporting of good news and bad news: Evidence from accounting narratives. Accounting and Business Research, 33(3), 171-185. https://doi.org/10.1080/00014788.2003.9729645
Cohen, K.B., & Hunter, L. (2008). Getting Started in Text Mining. PLoS Computational Biology. 4(1), e20. https://doi.org/10.1371/journal.pcbi.0040020
Das, S., & Chen, M. (2007). Yahoo! for Amazon: Sentiment extraction from small talk on the web. Management Science, 53(9), 1375-1388. https://doi.org/10.1287/mnsc.1070.0704
Das, S. (2014). Text and context: Language analytics in Finance. Foundations and Trends in Finance, 8(3), 145-261. https://doi.org/10.1561/0500000045
Davis, A.K., Piger, J.M., & Sedor, L.M. (2012). Beyond the numbers: Measuring the information content of earning press release language. Contemporary Accounting Research, 29(3), 845-868. https://doi.org/10.1111/j.1911-3846.2011.01130.x
Davis, A.K., & Tama-Sweet, I. (2012). Managers' use of language across alternative disclosure outlets: Earnings press releases versus MD&A. Contemporary Accounting Research, 29(3), 804-837. https://doi.org/10.1111/j.1911-3846.2011.01125.x
Debreceny, R.S., Want, T., & Zhou, M. (2019). Research in social media: Data sources and methodologies. Journal of Information Systems, 33(1), 1-28. https://doi.org/10.2308/isys-51984
Doran, J.S., Peterson, D.R., & Price, S.M. (2012). Earnings conference call content and stock price: The case of REITs. Journal of Real Estate Finance and Economics, 45(2), 402-434. https://doi.org/10.1007/s11146-010-9266-z
Duan, W., Gu, B., & Whinston, A.B. (2008a). Do online reviews matter? An empirical investigation of panel data. Decision Support Systems, 45(4), 1007-106. https://doi.org/10.1016/j.dss.2008.04.001
Duan, W., Gu, B., & Whinston, A.B. (2008b). The dynamics of online word-of-mouth and product sales -- An empirical investigation of the movie industry. Journal of Retailing, 84(2), 233-242. https://doi.org/10.1016/j.jretai.2008.04.005
Dyer, T., Lang, M., & Stice-Lawrence, L. (2017). The evolution of 10-K textual disclosure. Evidence from Latent Dirichlet Allocation. Journal of Accounting and Economics, 64(2-3), 221-245. https://doi.org/10.1016/j.jacceco.2017.07.002
Elrod, G.B. (2009). Is there predictive value in the words managers use? A key word analysis of the annual reports' Management Discussion and Analysis (Doctoral dissertation). University of Texas at Arlington.
Ferguson, N.J., Philip, D., Lam, H.Y.T., & Guo, J.M. (2015). Media content and stock returns: The predictive power of press. Multinational Finance Journal, 19(1), 1-31. https://doi.org/10.17578/19-1-1
Fisher, I.E., Garnsey, M.R., & Hughes, M.E. (2016). Natural Language Processing in accounting, auditing, and finance: A synthesis of the literature with a roadmap for future research. Intelligent Systems in Accounting, Finance and Management, 23(3), 157-214. https://doi.org/10.1002/isaf.1386
Francis, J.R., Khurana, I.K., & Pereira, R. (2005). Disclosure incentives and effects on cost of capital around the world. The Accounting Review, 80(4), 1125-1162. https://doi.org/10.2308/accr.2005.80.4.1125
Francis, J., Dhananjay, N., & Olsson, P. (2008). Voluntary disclosure, earnings quality, and cost of capital. Journal of Accounting Research, 46(1), 53-99. https://doi.org/10.1111/j.1475-679X.2008.00267.x
Frankel, R., Jennings, J., & Lee, J. (2016). Using unstructured and qualitative disclosures to explain accruals. Journal of Accounting and Economics, 62(2-3), 209-227. https://doi.org/10.1016/j.jacceco.2016.07.003
Gálvez-Rodríguez, M.M., Caba-Pérez, C., & López-Godoy, M. (2016). Drivers of Twitter as a strategic communication tool for non-profit organizations. Internet Research, 26(5), 1052-1071. https://doi.org/10.1108/IntR-07-2014-0188
Gandía, J.L. (2011). Internet disclosure by non-profit organizations: Empirical evidence of nongovernmental organizations for development in Spain. Nonprofit and Voluntary Sector Quarterly, 40(1), 57-78. https://doi.org/10.1177/0899764009343782
Gandía, J.L., & Huguet, D. (2018). Differences in audit pricing between voluntary and mandatory audits. Academia Revista Latinoamericana de Administración, 31(2), 336-359. https://doi.org/10.1108/ARLA-01-2016-0007
Gandía, J.L., Marrahí, L., & Huguet, D. (2016). Digital transparency and Web 2.0 in Spanish city councils. Government Information Quarterly, 33(1), 28-39. https://doi.org/10.1016/j.giq.2015.12.004
García, D. (2013). Sentiment during recessions. The Journal of Finance, 68 (3), 1267-1300. https://doi.org/10.1111/jofi.12027
García Osma, B., Gill de Albornoz, B., & Gisbert, A. (2005). La investigación sobre earnings management (Research on earnings management). Spanish Journal of Finance and Accounting, 34(127), 1001-1033. https://doi.org/10.1080/02102412.2005.10779570
Goel, S., Gangolly, J., Faerman, S.R., & Uzuner, O. (2010). Can linguistic predictors detect fraudulent financial filings? Journal of Emerging Technologies in Accounting, 7(1), 25-46. https://doi.org/10.2308/jeta.2010.7.1.25
Goel, S., & Gangolly, J. (2012). Beyond the numbers: Mining the annual report for hidden cues indicative of financial statement fraud. Intelligent Systems in Accounting, Finance and Management, 19(2), 75-89. https://doi.org/10.1002/isaf.1326
Goel, S., & Uzuner, O. (2016). Do sentiments matter in fraud detection? Estimating semantic orientation of annual reports. Intelligent Systems in Accounting, Finance and Management, 23(3), 215-239. https://doi.org/10.1002/isaf.1392
Guo, C., & Saxton, G. (2014). Tweeting social change: How social media are changing Nonprofit advocacy. Nonprofit and Voluntary Sector Quarterly, 43(1), 57-79. https://doi.org/10.1177/0899764012471585
Hájek, P., & Olej, V. (2013). Evaluating sentiment in annual reports for financial distress prediction using Neural Networks and Support Vector Machines. Engineering Applications of Neural Networks, pp 1-10, in International Conference on Engineering Applications of Neural Networks. https://doi.org/10.1007/978-3-642-41016-1%5f1
Hájek, P. (2018). Combining bag-of-words and sentiment features of annual reports to predict abnormal stock returns. Neural Computing and Applications, 29(7), 343-358. https://doi.org/10.1007/s00521-017-3194-2
Hales, J., Kuang, X.I., & Venkataraman, S. (2011). Who believes the hype? An experimental examination of how language affects investor judgments. Journal of Accounting Research, 49(1), 223-255. https://doi.org/10.1111/j.1475-679X.2010.00394.x
Hanley, K.W., & Hoberg, G. (2010). The information content of IPO prospectuses. Review of Financial Studies, 23, 2821-2864. https://doi.org/10.1093/rfs/hhq024
Henry, E. (2006). Market reaction to verbal components of earnings press releases: Event study using a predictive algorithm. Journal of Emerging Technologies in Accounting, 3(1), 1-19. https://doi.org/10.2308/jeta.2006.3.1.1
Henry, E. (2008). Are investors influenced by how earnings press releases are written? The Journal of Business Communication, 45(4), 363-407. https://doi.org/10.1177/0021943608319388
Hoberg, G., & Phillips, G. (2016). Text-based network industries and endogenous product differentiation. Journal of Political Economy, 124(5), 1423-1465. https://doi.org/10.3386/w15991
Huang, A.H., Zang, A.Y., & Zheng, R. (2014). Evidence on the information content of text in analyst reports. The Accounting Review, 89(6), 2151-2180. https://doi.org/10.2308/accr-50833
Huang, A.H., Lehavy, R., Zang, A.Y., & Zheng, R. (2018). Analyst information discovery and interpretation roles: A topic modeling approach. Management Science, 64(6), 2833-2855. https://doi.org/10.1287/mnsc.2017.2751
Huguet, D. and Gandía, J.L. (2014). Cost of debt capital and audit in Spanish SMEs. Spanish Journal of Finance and Accounting / Revista Española de Financiación y Contabilidad, 43(3), 266-289. https://doi.org/10.1080/02102412.2014.942154
Huguet, D. and Gandía, J.L. (2016). Audit and earnings management in Spanish SMEs. Business Research Quarterly, 19(3), 171-187. https://doi.org/10.1016/j.brq.2015.12.001
Humpherys, S.L., Moffitt, K.C., Burns, M.B., Burgoon, J.K., & Felix, W.F. (2011). Identification of fraudulent financial statements using linguistic credibility analysis. Decision Support Systems, 50(3), 585-594. https://doi.org/10.1016/j.dss.2010.08.009
Hutchison, P.D., Daigle, R.J., & George, B. (2018). Application of latent semantic analysis in AIS academic research. International Journal of Accounting Information Systems, 31(1), 83-96. https://doi.org/10.1016/j.accinf.2018.09.003
Jegadeesh, N., & Wu, D. (2013). Word power: A new approach for content analysis. Journal of Financial Economics, 110(3), 712-729. https://doi.org/10.1016/j.jfineco.2013.08.018
Jiang, Y., Raghupathi, V., & Raghupathi, W. (2009). Content and design of corporate governance web sites. Information Systems Management, 26(1), 13-27. https://doi.org/10.1080/10580530802384704
Jorgensen, P. (2005). Incorporating context in text analysis by interactive activation with competition artificial neural networks. Information Processing and Management: An International Journal, 41(5), 1081-1099. https://doi.org/10.1016/j.ipm.2004.10.003
Karim, K.E., Lim, K.J., Pinsker, R.E., & Zhu, H. (2019). Using linguistics to mine unstructured data from FASB exposure drafts. Journal of Information Systems, 33(1), 67-83. https://doi.org/10.2308/isys-51928
Kearney, C., & Liu, S. (2014). Textual sentiment in finance: A survey of methods and models. International Review of Financial Analysis, 33, 171-185. https://doi.org/10.1016/j.irfa.2014.02.006
Kim, S.H., & Kim, D. (2014). Investor sentiment from internet message postings and the predictability of stock returns. Journal of Economic Behavior and Organization, 107(B), 708-729. https://doi.org/10.1016/j.jebo.2014.04.015
Koo, D.S., Wu, J.J., & Yeung, P.E. (2017). Earnings attribution and information transfers. Contemporary Accounting Research, 34(3), 1547-1579. https://doi.org/10.1111/1911-3846.12308
Koppel, M., & Schler, J. (2006). The importance of neutral examples for learning sentiment. Computational Intelligence, 22(2), 100-109. https://doi.org/10.1111/j.1467-8640.2006.00276.x
Kothari, S.P., Li, X., & Short., J.E., (2009). The effect of disclosures by management, analyst, and business press on cost of capital, return volatility, and analyst forecast: A study using content analysis. The Accounting Review, 84(5), 1639-1670. https://doi.org/10.2308/accr.2009.84.5.1639
Lang, M., & Stice-Lawrence, L. (2015). Textual analysis and international financial reporting: Large sample evidence. Journal of Accounting and Economics, 60(2-3), 110-135. https://doi.org/10.1016/j.jacceco.2015.09.002
Leuz, C., & Wysocki, P.D. (2016). The economics of disclosure and financial reporting regulation: Evidence and suggestions for future research. Journal of Accounting Research, 54(2), 525-622. https://doi.org/10.1111/1475-679X.12115
Levin, I.P., Schneider, S.L., & Gaeth, G.J. (1998). All frames are not created equal: A typology and critical analysis of framing effects. Organizational Behavior and Human Decision Processes, 76(2), 149-188. https://doi.org/10.1006/obhd.1998.2804
Li, F. (2008). Annual report readability, current earnings, and earnings persistence. Journal of Accounting and Economics, 45(2-3), 221-247. https://doi.org/10.1016/j.jacceco.2008.02.003
Li, F. (2010). Textual analysis of corporate disclosures: A survey of the literature. Journal of Accounting Literature, 29, 143-165.
Li, F. (2010). The information content of forward-looking statements in corporate filings -- A naïve Bayesian Machine Learning approach. Journal of Accounting Research, 48(5), 1049-1102. https://doi.org/10.1111/j.1475-679X.2010.00382.x
Li, Q., Wang, T., Li, P., Liu, L., Gong., Q., & Chen, Y. (2014a). The effect of news and public mood on stock movements. Information Sciences, 278, 826-840. https://doi.org/10.1016/j.ins.2014.03.096
Li, X., Xie, H., Chen, L., Wang, J., & Deng, X. (2014b). New impact on stock price return via sentiment analysis. Knowledge-Based Systems, 69, 14-23. https://doi.org/10.1016/j.knosys.2014.04.022
Lim, E.K.Y., Chalmers, K., & Hanlon, D. (2018). The influence of business strategy on annual report readability. Journal of Accounting and Public Policy, 37(1), 65-81. https://doi.org/10.1016/j.jaccpubpol.2018.01.003
Lo, K. (2008). Earnings management and earnings quality. Journal of Accounting and Economics, 45(2-3), 350-357. https://doi.org/10.1016/j.jaccpubpol.2018.01.003
Lo, K., Ramos, F., & Rogo, R. (2017). Earnings management and annual report readability. Journal of Accounting and Economics, 63(1), 1-25. https://doi.org/10.1016/j.jacceco.2016.09.002
Loughran, T., McDonald, B., & Yun, H. (2009). A wolf in sheep's clothing: The use of ethics-related terms in 10-K reports. Journal of Business Ethics, 89(Supplement), 39-49. https://doi.org/10.1007/s10551-008-9910-1
Loughran, T., & McDonald, B. (2011). When is a liability not a liability? Textual analysis, dictionaries and 10-Ks. The Journal of Finance, 66(1), 35-65. https://doi.org/10.1111/j.1540-6261.2010.01625.x
Loughran, T., & McDonald, B. (2014). Measuring readability in financial disclosures. The Journal of Finance, 69(4), 1643-1671. https://doi.org/10.1111/jofi.12162
Loughran, T., & McDonald, B. (2016). Textual analysis in accounting and finance: A survey. Journal of Accounting Research, 54(4), 1187-1230. https://doi.org/10.1111/1475-679X.12123
Lovejoy, K., & Saxton, G.D. (2012). Information, community and action: How non-profit organizations use social media. Journal of Computer-Mediated Communication, 17(3), 337-353. https://doi.org/10.1111/j.1083-6101.2012.01576.x
Luo, X., Zhang, J., & Duan, W. (2013). Social media and firm equity value. Information Systems Research, 24(1), 146-163. https://doi.org/10.2139/ssrn.2162167
Malo, P., Sinha, A., Takala, P., Korhonen, P., & Wallenius, J. (2014). Good debt or bad debt: Detecting semantic orientations in economic texts. Journal of the Association for Information Science and Technology, 65(4), 782-796. https://doi.org/10.1002/asi.23062
Mayew, W.J., Sethuraman, M., & Venkatachalam, M. (2015). MD&A disclosure and the firm's ability to continue as a going concern. The Accounting Review, 90(4), 1621-1651. https://doi.org/10.2139/ssrn.2272463
McCallum, A. (1996). Bow: A toolkit for statistical language modeling, text retrieval, classification and clustering. Working paper: School of Computer Science, Carnegie-Mellon University.
Melloni, G., Caglio, A., & Perego, P. (2017). Saying more with less? Disclosure conciseness, completeness and balance in Integrated Reports. Journal of Accounting and Public Policy, 36(3), 220-238. https://doi.org/10.1016/j.jaccpubpol.2017.03.001
Mo, S.Y.K., Liu, A., & Yand, S.Y. (2016). New sentiment to market impact and its feedback effect. Environment Systems and Decisions, 36(2), 158-166. https://doi.org/10.1007/s10669-016-9590-9
Nguyen, T.H., Shirai, K., & Velcin, J. (2015). Sentiment analysis on social media for stock movement prediction. Expert Systems with Applications, 42(24), 9603-9611. https://doi.org/10.1016/j.eswa.2015.07.052
Noecker, J., Ryan, M., & Juola, P. (2013). Psychological profiling through textual analysis. Literary and Linguistic Computing, 28(3), 382-387. https://doi.org/10.1093/llc/fqs070
Piñeiro-Chousa, Vizcaíno-González, M., & Pérez-Pico, A.M. (2017). Influence of social media over the stock market. Psychology and Marketing, 34(1), 101-108. https://doi.org/10.1002/mar.20976
Price, S. M., Doran, J. S., Peterson, D. R., & Bliss, B.A. (2012). Earnings conference calls and stock returns: The incremental informativeness of textual tone. Journal of Banking and Finance, 36(4), 992--1011. https://doi.org/10.1016/j.jbankfin.2011.10.013
Saxton, G.D., & Wang, L. (2014). The social network effect: The determinants of giving through social media. Nonprofit and Voluntary Sector Quarterly, 43(5), 850-868. https://doi.org/10.1177/0899764013485159
Siganos, A., Vagenas-Nanos, E., & Verwijmeren, P. (2017). Facebook's daily sentiment and international stock markets. Journal of Economic Behavior and Organization, 107(B), 730-743. https://doi.org/10.1016/j.jebo.2014.06.004
Souza, T., Kolchyna, O., Treleaven, P.C., & Aste, T. (2016). Twitter sentiment analysis applied to Finance: a case study in the retail industry. Handbook of Sentiment Analysis in Finance. Mitra, G. and Yu, X. (Eds.). (2016). ISBN 1910571571.
Sprenger, T.O., Sandner, P.G., Tumasjan, A., & Welpe, I. (2014). News or noise? Using Twitter to identify and understand company-specific news flow. Journal of Business Finance and Accounting, 41(7-8), 791-830. https://doi.org/10.1111/jbfa.12086
Sprenger, T.O., Tumasjan, A., Sandner, P.G., & Welpe, I.M., (2014). Tweets and trades: The information content of stock microblogs. European Financial Management, 20(5), 926-957. https://doi.org/10.1111/j.1468-036X.2013.12007.x
Schroeder, N., & Gibson, C. (1990). Readability of Management's Discussion and Analysis. Accounting Horizons, 4(4), 78-87.
Sudhahar, S., Veltri, G.A., & Cristianini, N. (2015). Automated analysis of the US presidential elections using Big Data and network analysis. Big Data and Society, 2(1), 1-28. https://doi.org/10.1177/2053951715572916
Sul, H.K., Dennis, A.R., & Yuan, L. (2017). Trading on Twitter: Using social media sentiment to predict stock returns. Decision Sciences, 48(3), 454-488. https://doi.org/10.1111/deci.12229
Taboada, M., Brooke, J., Tofiloski, M., Voll, K., & Stede, M. (2011). Lexicon-based methods for sentiment analysis. Computational Linguistics, 37(2), 267-307. https://doi.org/10.1162/COLI%5fa%5f00049
Taboada, M. (2016). Sentiment analysis: An overview from linguistics. Annual Review of Linguistics, 2, 325-347. https://doi.org/10.1146/annurev-linguistics-011415-040518
Tetlock, P.C. (2007). Giving content to investor sentiment: The role of media in the stock market. The Journal of Finance, 62(3), 1139-1168. https://doi.org/10.2139/ssrn.685145
Tetlock, P.C., Saar-Tsechansky, M., & Macskassy, S. (2008). More than words: Quantifying language to measure firms' fundamentals. The Journal of Finance, 63(3), 1437-1467. https://doi.org/10.1111/j.1540-6261.2008.01362.x
Tetlock, P.C. (2011). All the news that's fit to reprint: Do investors react to stale information? The Review of Financial Studies, 24(5), 1481-1512. https://doi.org/10.1093/rfs/hhq141
Tsai, M.F., & Wang, C.J. (2017). On the risk predicition and analysis of soft information in finance reports. European Journal of Operational Research, 257(1), 243-250. https://doi.org/10.1016/j.ejor.2016.06.069
Tumasjan, A., Sprenger, T.O., Sandner, P.G., & Welpe, I.M. (2011). Election forecasts with Twitter: How 140 characters reflect the political landscape. Social Science Computer Review, 29(4), 402-418. https://doi.org/10.1177/0894439310386557
Twedt, B., & Rees, L. (2012). Reading between the lines: An empirical examination of qualitative attributes of financial analysts' reports. Journal of Accounting and Public Policy, 31(1), 1-21. https://doi.org/10.1016/j.jaccpubpol.2011.10.010
Ye, Q., Law, R., & Gu, B. (2009). The impact of online user reviews on hotel room sales. International Journal of Hospitality Management, 28(1), 180-182. https://doi.org/10.1016/j.ijhm.2008.06.011
Zhang, X. Fuehres, H., & Gloor, P.A. (2011). Predicting stock market indicators through Twitter "I hope it is not as bad as I fear". Procedia -- Social and Behavioural Sciences, 26, 55-62. https://doi.org/10.1016/j.sbspro.2011.10.562
Zhang, J.L., Härdle, W.K., Chen, C.Y., & Bommes, E. (2016). Distillation of news flow into analysis of stock reactions. Journal of Business and Economic Statistics, 34(4), 547-563. https://doi.org/10.1080/07350015.2015.1110525
Zheludev, I., Smith, R., & Aste, T. (2014). When can social media lead financial markets? Scientific Reports, 4. https://doi.org/10.1038/srep04213
Derechos de autor 2021 Revista de Contabilidad - Spanish Accounting Review
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Las obras que se publican en esta revista están sujetas a los siguientes términos:
1. Ediciones de la Universidad de Murcia (EDITUM) y ASEPUC conservan los derechos patrimoniales (copyright) de las obras publicadas, y favorece y permite la reutilización de las mismas bajo la licencia de uso indicada en el punto 2.
2. Las obras se publican en la edición electrónica de la revista bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. Permite copiar, distribuir e incluir el artículo en un trabajo colectivo (por ejemplo, una antología), siempre y cuando no exista una finalidad comercial, no se altere ni modifique el artículo y se cite apropiadamente el trabajo original. Esta revista no tiene tarifa por la publicación Open Access. ASEPUC y EDITUM financian los costes de producción y publicación de los manuscritos.
3. Condiciones de auto-archivo. Se permite y se anima a los autores a difundir electrónicamente la versión publicada de sus obras, ya que favorece su circulación y difusión y con ello un posible aumento en su citación y alcance entre la comunidad académica.