Análisis de contenido y lingüística computacional: su rapidez, confiabilidad y perspectivas
Resumen
El análisis de contenido es una técnica que convierte las respuestas abiertas de entrevistas en categorías. Este proceso es de gran utilidad dado que define las categorías de un estudio sobre la base de la percepción de la muestra, evitando la imposición de categorías creadas por el investigador. Sin embargo, este tipo de análisis conlleva un alto costo de tiempo, recursos y personal especializado. Programas como el ATLAS.ti o el NVivo no constituyen una solución eficaz ni eficiente. Los nuevos programas basados en lingüística computacional ofrecen un escenario diferente, dado que el programa “entiende e interpreta” las categorías. Para comprobar su eficacia y eficiencia se compara un análisis de contenido hecho por expertos con el análisis utilizando el programa SPSS Text Analytics for Surveys (TA). Se concluye que bajo la supervisión de un investigador especializado, siguiendo ciertos pasos de afinamiento de la extracción, el TA permite un ahorro de tiempo importante, una mayor confiabilidad y abre las posibilidades para análisis cualitativos con muestras grandes.
Descargas
Las obras que se publican en esta revista están sujetas a los siguientes términos:
1. El Servicio de Publicaciones de la Universidad de Murcia (la editorial) conserva los derechos patrimoniales (copyright) de las obras publicadas, y favorece y permite la reutilización de las mismas bajo la licencia de uso indicada en el punto 2.
© Servicio de Publicaciones, Universidad de Murcia, 2024
2. Las obras se publican en la edición electrónica de la revista bajo una licencia Creative Commons Reconocimiento-CompartirIgual 4.0 Internacional (texto legal). Se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que: i) se cite la autoría y la fuente original de su publicación (revista, editorial y URL de la obra); ii) no se usen para fines comerciales; iii) se mencione la existencia y especificaciones de esta licencia de uso.
3. Condiciones de auto-archivo. Se permite y se anima a los autores a difundir electrónicamente las versiones pre-print (versión antes de ser evaluada y enviada a la revista) y/o post-print (versión evaluada y aceptada para su publicación) de sus obras antes de su publicación, ya que favorece su circulación y difusión más temprana y con ello un posible aumento en su citación y alcance entre la comunidad académica. Color RoMEO: verde.