Propiedades psicométricas de la Escala de Motivación Académica de los Adolescentes (EMAA) en una muestra representativa de estudiantes de instituto de la República Dominicana

Autores/as

  • Betty Reyes Universidad Autónoma de Santo Domingo (República Dominicana)
  • Irene Fernández Universitat de València (España)
  • Sergio Pérez-Belmonte Departmento de Metodología de las Ciencias del Comportamiento, Universidad de Valencia (España)
  • Saturnino de los Santos Universidad Autónoma de Santo Domingo (República Dominicana)
  • José M. Tomás Departamento de Metodología de las Ciencias del Comportamiento, Universidad de Valencia (España)
  • Laura Galiana Departamento de Metodología de las Ciencias del Comportamiento, Universidad de Valencia (España)
DOI: https://doi.org/10.6018/analesps.451641
Palabras clave: Motivación académica, Teoría de la respuesta al ítem, Análisis factorial confirmatorio, Modelos de ecuaciones estructurales, Calificaciones, Estudiantes

Resumen

Entre el creciente cuerpo de investigación que se ha centrado en el éxito académico, la motivación académica ha captado considerable atención. El objetivo de esta investigación es presentar la primera validación de la Escala de Motivación Académica de los Adolescentes (EMAA). La muestra total estuvo compuesta por 1712 estudiantes de secundaria de dos distritos de la República Dominicana. La medida principal fue la EMAA. Los resultados del AFC fueron satisfactorios: χ2(5) = 57.73, p < .001; CFI = .970; RMSEA = .079, 90% CI [.061, .097], y SRMR = .024. Los análisis de TRI favorecieron al modelo logístico de dos parámetros, indicando que los ítems no fueron igualmente discriminativos. El Modelo de Ecuaciones Estructurales en el que la motivación académica predecía de forma estadísticamente significativa las calificaciones obtuvo un ajuste excelente: χ2(53) = 182.76, p < .001; CFI = .980; RMSEA = .038 [.032, .044], and SRMR = .025. En resumen, este trabajo presenta un exhaustivo análisis psicométrico de la EMAA en una muestra representativa de estudiantes dominicanos de instituto.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Adelman, M., & Székely, M. (2016). School Dropout in Central America An Overview of Trends, Causes, Consequences, and Promising Interventions. Policy Research Working Paper 7561, World Bank Group.

Astin, A. W. (1991). Assessment for excellence: The philosophy and practice of assessment and evaluation in higher education. New York: Macmillian

Astin, A. W. (1993). What Matters in College? Four Critical Years Revisited (1st Ed.). San Francisco: Jossey-Bass.

Bugler, M., McGeown, S., & St Clair-Thompson, H. (2016). An investigation of gender and age differences in academic motivation and classroom behaviour in adolescents. Educational Psychology, 36(7), 1196-1218.

Castillo, I., Balaguer, I., & Duda, J. L. (2003) Las teorías personales sobre el logro académico y su relación con la alienación escolar [Personal theories about academic achievement and their relationship with scholar lineup]. Psicothema, 15(1), 75-81.

Christenson, S. L., & Thurlow, M. L. (2004). School dropouts: Prevention considerations, interventions, and challenges. Current Directions in Psychological Science, 13, 36-39. doi:10.1111/j.0963-7214.2004. 01301010.

Church, M. A., Elliot, A. J., & Gable, S. L. (2001). Perceptions of classroom environment, achievement goals, and achievement outcomes. Journal of Educational Psychology, 93, 43–54. doi: 10.1037/0022-0663.93.1.43

Cupani, M., Garrido, S., Tavella, J. (2013). El Modelo de los Cinco Factores de Personalidad: contribución predictiva al rendimiento académico [The Five-Factor Model of Personality: predictive contribution to academic performance]. Revista de Psicología UCA, 9(17).

Damian, L. E.; Stoeber, J.; Negru, O. y Baban, A. (2016). On the development of perfectionism: the longitudinal role of academic achievement and academic efficacy. Journal of Personality. doi:10.1111/jopy.12261.

Dotterer, A. M., & Lowe, K. (2011). Classroom context, school engagement, and academic achievement in early adolescence. Journal of Youth and Adolescence, 40(12), 1649-1660.

Epstein, J. L., & Sheldon, S. B. (2002). Present and accounted for: Improving student attendance through family and community involvement. Journal of Educational Research, 95, 308-318. doi:10.1080/ 00220670209596604.

Fernandes, D. C. y Alves-Silveira, M. (2012). Evaluación de la motivación académica y la ansiedad escolar y posibles relaciones entre ellas. Psico-USF, 17(3).

Froiland, J. M. y Oros, E. (2014). Intrinsic motivation, perceived competence and classroom engagement as longitudinal predictors of adolescent reading achievement. Educational Psychology, 34, 119-132. doi: 10.1080/01443410.2013.822964

Gordon, M. S. (2016). Community disadvantage and adolescent’s academic achievement: the mediating role of father influence. Journal of Child and Family Studies, 25 (7), 2069-2078. doi: 10.1007/s10826-016-0380-2

Green, J., Liem, G. A. D., Martin, A. J., Colmar, S., Marsh, H. W., & McInerney, D. (2012). Academic motivation, self-concept, engagement, and performance in high school: Key processes from a longitudinal perspective. Journal of Adolescence, 35, 1111–1122. doi: 10.1016/j.adolescence.2012.02.016

Guay, F., Ratelle, C. F., y Chanal, J. (2008). Optimal learning in optimal contexts: the role of self determination in education. Canadian Psychology, 49, 233-240.

Gutiérrez, M., & Tomás, J.M. (2018). Clima motivacional en clase, motivación y éxito académico en estudiantes universitarios [Motivational climate in the classroom, motivation and academic achievement in university students]. Revista de Psicodidactica, 23(2), 94-101. doi: 10.1016/j.psicod.2018.02.001.

Gutiérrez, M., Tomas, J. M., Marcos Barrica, J., & Romero I., (2017). Influencia del clima motivacional en clase sobre el compromiso escolar de los adolescentes y su logro académico [Motivational climate in the classroom influence on school engagement and academic achievement of adolescents]. Enseñanza & Teaching, 35(1), 21-37.

Hambleton, R. K. (2005). Issues, designs and technical guidelines for adapting tests into multiple languages and cultures. In R. K. Hambleton, P. F. Merenda, and S. D. Spielberger (Editors), Adapting educational and psychological tests for cross-cultural assessment (pp. 3-38). New Jersey: Lawrence Erlbaum Associates

Hambleton, R. K., van der Linden W. J., & Wells C. S. (2010). IRT models for the analysis of polytomously scored data: Brief and selected history of model building advances. In M. L. Nering and R. Ostini (Eds.), Handbook of polytomous item response models (pp. 21–42). New York, NY: Routledge.

Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6, 1–55. http://doi.org/10.1080/10705519909540118

Hufton, N. R., Elliott, J. G., & Illushin, L. (2002). Educational motivation and engagement: Qualitative accounts from three countries. British Educational Research Journal, 28, 265–289. doi:10.1080/01411920120122185

Hutcheson, G., & Sofroniou, N. (1999). The multivariate social scientist. London: Sage.

Iniciativa Dominicana por una Educación de Calidad, IDEC. (2018). Tercer Informe de seguimiento y monitoreo Año 2018. Santo Domingo: Iniciativa Dominicana por una Educación de Calidad (IDEC).

Jang, H., Kim, E. J., & Reeve, J. (2012). Longitudinal test of self-determination theory’s motivation mediation model in a naturally occurring classroom context. Journal of Educational Psychology, 104, 1175–1188. doi: 10.1037/a0028089

Jelas, Z. M.; Azman, N.; Zulnaidi, H. y Ahmad, N. A. (2016). Learning support and academic achievement among Malaysian adolescents: the mediating role of student engagement. Learning Environments Research, 19(2), 221-240. doi: 10.1007/s10984-015-9202-5

Kearney, C. A., & Graczyk, P. (2014). A response to intervention model to promote school attendance and decrease school absenteeism. Child Youth Care Forum, 43, 1-25. doi: 10.1007/s10566-013-9222-1

Kline R. B. (2011). Principles and practice of structural equation modeling. New York, NY: The Guilford Press.

Kuh, G. D., Kinzie, J., Buckley, J. A., Bridges, B. K., & Hayek, J. C. (2006). What matters to student success: A review of the literature. Commissioned report for the National Symposium on Postsecondary Student Success: Spearheading a Dialog on Student Success. Washington, DC: National Postsecondary Education Cooperative.

Lau, S. y Roeser, R. W. (2002). Cognitive abilities and motivational processes in high school students’ situational engagement and achievement in science. Educational Assessment, 8, 139-162.

Lee, C. S.; Hayes, K. N.; Seitz, J.; DiStefano, R. y O’Connor, D. (2016). Understanding motivational structures that differentially predict engagement and achievement in middle school science. International Journal of Science Education, 38, 192-215.

Lee, C. S.; Hayes, K. N.; Seitz, J.; Distefano, R. y O’Connor, D. (2016). Understanding motivational structures that differentially predict engagement and achievement in middle school science. International Journal of Science Education, 38(2), 192-215. doi: 10.1080/09500693.2015.1136452

Martinelli, S. C., y Genari, C. H. M. (2009). Relações entre desempenho escolar e orientações motivacionais. Estudos de Psicologia, 14, 13-21.

Matos, L., Lens, W., Vansteenkiste, M., & Mouratidis, A. (2017). Optimal motivation in Peruvian high schools: Should learners pursue and teachers promote mastery goals, performance-approach goals or both? Learning and Individual Differences, 55, 87–96. doi: 10.1016/j.lindif.2017.02.003

Meece, J. L., Glienke, B. B., & Burg, S. (2006). Gender and motivation. Journal of school psychology, 44(5), 351-373.

Mega, C., Ronconi, L. y De Beni, R. (2014). What makes a good student? How emotions, self-regulated learning, and motivation contribute to academic achievement. Journal of Educational Psychology, 106(1), 121-131. doi: 10.1037/a0033546

Mouratidis, A., Vansteenkiste, M., Michou, A., y Lens, W. (2013). Perceived structure and achievement goals as predictors of students’ self-regulated learning and affect and the mediating role of competence need satisfaction. Learning and Individual Differences, 23, 179-186.

Muthén, L. K. & Muthén, B. O. (1998-2017). Mplus User’s Guide. Eighth Edition. Los Angeles, CA: Muthén & Muthén.

OECD. (2016). PISA 2015 Results (Volume I): Excellence and Equity in Education, PISA. Paris: OECD Publishing. https://doi.org/10.1787/9789264266490-en.

Ohtam, K., Nakaya, M., Ito, T., y Okada, R. (2013). Do classroom goal structures moderate effects of the academic contingency of self-worth? Influence on intrinsic interest and self-regulated learning strategies. JAMA Neurology, 70, 355-366.

Organization for Economic Co-operation and Development (OECD). (2016). PISA 2015 Results (Volume 1): Excellence and Equity in Education. Paris, France: OECD.

Plunkett, S. W., & Bámaca-Gómez, M. Y. (2003). The relationship between parenting, acculturation, and adolescent academics in Mexican-origin immigrant families in Los Angeles. Hispanic Journal of Behavioral Sciences, 25(2), 222–239. doi: 10.1177/0739986303025002005

Plunkett, S. W., Henry, C. S., Houltberg, B. J., Sands, T., & Abarca-Mortensen, S. (2008). Academic support by significant others and educational resilience in Mexican-origin ninth grade students from intact families. The Journal of Early Adolescence, 28(3), 333–355. doi: 10.1177/0272431608314660

Raykov, T., & Marcoulides, G. A. (2011). Introduction to psychometric theory. New York, NY: Routledge.

Reynolds, D.; Sammons, P.; De Fraine, B.; Damme, J. V.; Townsend, T.; Teddlie, C. y Stringfield, S. (2014). Educational effectiveness research (EER): A state-of-the-art review. School Effectiveness and School Improvement, 25, 197-230. doi: 10.1080/09243453.2014.885450

Samejima F. (1997). Graded response model. In W. van der Linden W. and R. K. Hambleton (Eds.), Handbook of modern Item Response theory (pp. 85–100). New York, NY: Springer

Stover, J. B., Uriel, F., De la Iglesia, G., Freiberg-Hoffmann, A., Liporace-Mercedes, F. (2014). Rendimiento académico, estrategias de aprendizaje y motivación en alumnos de Escuela Media de Buenos Aires. Perspectivas en psicología, 11, 10-20.

Tanner-Smith, E. E., & Wilson, S. J. (2013). A meta-analysis of the effects of dropout prevention programs on school absenteeism. Prevention Science. doi: 10.1007/s11121-012-0330-1.

United Nations Educational, Scientific, and Cultural Organization (UNESCO). (2016). Reporte técnico. Tercer estudio regional comparativo y explicativo [Technical report. Third comparative and explanatory regional study]. Santiago, Chile: Oficina Regional de Educación para América Latina y el Caribe (OREALC/UNESCO Santiago).

Upadyaya, K., & Salmela-Aro, K. (2013). Development of School Engagement in Association WithAcademic Success and Well-Beingin Varying Social ContextsA Review of Empirical Research. European Psychologist, 18(2), 136-147.

Winne, P. H. y Nesbit, J. C. (2010). The psychology of academic achievement. Annual Review of Psychology, 61, 653-678. doi: 10.1146/annurev.psych.093008.100348

Xia, M.; Fosco, G. M. y Feinberg, M. E. (2016). Examining reciprocal influences among family climate, school attachment, and academic self-regulation: implications for school success. Journal of Family Psychology, 30 (4), 442-452. doi: 10.1037/fam0000141

Zenorini, R. P., Santos, A. A., y Monteiro, R. M. (2011). Motivação para aprender: relação com o desempenho de estudantes. Paideia, 21, 157- 164.

Publicado
01-01-2022
Cómo citar
Reyes, B. ., Fernández, I., Pérez-Belmonte, S., de los Santos, S., Tomás, J. M., & Galiana, L. (2022). Propiedades psicométricas de la Escala de Motivación Académica de los Adolescentes (EMAA) en una muestra representativa de estudiantes de instituto de la República Dominicana. Anales de Psicología / Annals of Psychology, 38(1), 93–100. https://doi.org/10.6018/analesps.451641
Número
Sección
Psicología evolutiva y de la educación