Mejora de la capacidad antifúngica in vitro e in vivo de un combinado de antagonistas compatibles frente a Phytophthora capsici Leonian

Autores/as

  • Mohammed Ezziyyani Université Hassan Premier Settat, Faculté Polydisciplinaire de Khouribga (FPK), Département de Biologie, El Hay El Jadid, El Byout. BP.: 145. Office Chérifien des Phosphates (OCP). Khouribga principale, 25000. Maroc
Palabras clave: Compatibilidad, Biocontrol, Burkholderia cepacia, Trichoderma harzianum, Pimiento

Resumen

Se estudió la capacidad antagónica de la combinación de dos microorganismos compatibles entre sí, la bacteria Burkholderia cepacia, y el hongo Trichoderma harzianum sobre el patógeno Phy­tophthora capsici, agente causal de la podredumbre de pimiento. Se realizaron confrontaciones duales in vitro de los dos antagonistas frente al patógeno y entre ellos. Los antagonistas interfieren en la supervivencia y el desarrollo del patógeno. B. cepacia produce antibiosis y T. harzianum ejerce competencia por espacio y nutrientes, micoparasitismo y lisis enzimática. El medio Avena-vermiculita produce un óptimo de biomasa. La dosis óptima de los antagonistas fueron 3.5×108 esporas/ml de T. harzianum y la 109 FCU/ml de B. cepacia, en un rango de pH 3.5-5.6 y temperaturas entre 20-30 °C. In vivo, la combinación B. cepacia+T. harzianum+suelo de plantación, redujo un 84% la incidencia de la “tristeza” 

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Bara F, Llima A, Ulhoa L & Cirano J. 2003. Purification and characterization of an exo-β-1,3-glucanase produced by Trichoderma asperellum. FEMS Microbiology Letters 219: 81-85.

Belanger R, Dufuor N, Caron J & Benhamou N. 1995. Chronological events associated with the antagonistic properties of Trichoderma harzianum against Botrytis cinerea: Indirect evidence for sequential role of antibiotics and parasitism. Biocontrol Science Technology 5: 41-54.

Candela ME, Alcázar MD, Espín A, Egea-Gilabert C & Almela L. 1995. Soluble phenolic acids in Capsicum annuum stems infected with Phytophthora capsici. Plant Pathology 44: 116-123.

De la Fuente L, Bajsa N, Bagnasco P, Quagliotto L,Thomashow L & Arias A. 2001. Antibiotic production by Pseudomonas fluorescens isolated from forage legume rhizosphere. Journal of Applied Microbiology 90: 421-429.

Elad Y & Baker R. 1985. The role of competition for iron and carbon in suppression of clamidospore germination of Fusarium spp. by Pseudomonas spp. Phytopathology 75: 1053.

Elad Y, Chet I & Henis Y. 1982. Degradation of plant pathogenic fungi by Trichoderma harzianum. Canadian Journal of Microbiology 28: 719-725.

Elander RP, Mabe JA, Hamill RH & Gorman M. 1968. Metabolism of tryptophans by Pseudomonas aureofaciens. Production of pyrrolnitrin by selected Pseudomonas species. Applied Microbiology 16: 753-758.

Ezziyyani M, Pérez-Sánchez C, Requena ME, Sid Ahmed A. & Candela ME, 2004. Evaluación del biocontrol de Phytophthora capsici en pimiento (Capsicum annuum L.) por tratamiento con Burkholderia cepacia. Anales de Biología 26: 61-68.

Ezziyyani M, Requena ME, Perez-Sanchez C & Candela ME, 2005. Efecto del sustrato y la temperatura en el control biológico de Phytophthora capsici en pimiento (Capsicum annuum L.). Anal Biol. 27: 119-126.

Ezziyyani M, Requena ME, Egea Gilabert C & Candela ME, 2007. Biological Control of Phytophthora root rot of pepper Using Trichoderma harzianum and Streptomyces rochei in Combination Journal of Phytopathology 155: 342-349.

Ezziyyani M, Requena ME, Egea Gilabert C, Lamarti A & Candela ME. 2009. Biological control of Phytophthora capsici root rot of pepper (Capsicum annuum L.) plants using Burkholderia cepacia and Trichoderma harzianum. Journal of Applied BioSciences. 13: 745-754.

Herrera-López J, Pérez-Jiménez M, Llobel A, Monte- Vázquez E & Zea-Bonilla T. 1999. Estudios in vivo de Trichoderma como agente de biocontrol contra Phytophthora cinnamomi y Rosellinia necatrix en aguacate. Revista Chapingo Serie Horticultura 5: 261-265.

Kimer S, Hammer PE, Hill DS, Altmann A, Fischer I, Weislo LJ, Lanahan M, Vanpee KH & Ligon JM. 1998. Functions encoded by pyrrolnitrin biosynthetic genes from Pseudomonas fluorescens. Journal of Bacteriology 180: 939-1943.

Kraus J & Loper JE. 1995. Characterization of genomic required for production of antibiotic pyoluteorin by the biological control agent Pseudomonas fluorescens Pf-5. Applied Environmental Microbiology 61: 849-854.

Lahsen HA, Soler A, Rey M, De la Cruz J, Monte E & Llobell A. 2001. An antifungal Exo-a-glucanase (AGN1) from the biocontrol fungus Trichoderma harzianum. Applied and Environmental Microbiology 67: 5833-5839

Leeman M, Van Pelt JA, DeOuden FM, Heinsbroek M & Bakker PAHM. 1995. Induction of systemic resistance by Pseudomonas fluorescens in radish cultivars differing in susceptibility to Fusarium wilt, using a novel bioassay. European Journal of Plant Pathology 101: 655-664.

Loper JE & Henkels MD. 1997. Availability of iron to Pseudomonas fluorescens in rhizosphere and bulk soil evaluated with an ice nucleation reporter gene. Applied Environmental Microbiology 63: 99 105.

Lorito M, Harman GE, Hayes CK, Broadway RM, Transmo A, Woo SL, Di Pietro A. 1993. Chitinolytic enzymes produced by Trichoderma harzianum: antifungal activity of purified endochitinase and chitobiosidase. Phytopathology 83: 302-307.

Papavizas GC, Lewis JA & Abd-Elmoity TH. 1982. Evaluation of new biotypes of Trichoderma harzianum for tolerance to Benomyl and enhanced biocontrol capabilities. Phytopathology 72: 126-132.

Papavizas GC & Lumsden RD. 1980. Biological control of soil borne fungal propagules. Annual Review of Phytopathology 18: 389-413.

Rey M, González L, Monte E & Llobell A, 2002. Genómica funcional de estirpes antagonistas del género Trichoderma. León: Actas del XXV Congreso de la SEBBM, España.

Rosales AM, Thomashow RJC & Mew TW. 1995. Isolation and identification of antifungal metabolites produced by rice-associated antagonistic Pseudomonas spp. Phytopathology 85: 1028-1032

Sid Ahmed A, Ezziyyani M, Pérez Sánchez C. & Candela ME. 2003a. Effect of chitin on biological control activity of Bacillus spp. and Trichoderma harzianum against root rot disease in pepper (Capsicum annuum) plants. European Journal of Plant Pathology 109: 418-426.

Sid Ahmed A, Ezziyyani M, Egea Gilabert C & Candela ME. 2003b. Selecting bacterial stains for use in the biocontrol of diseases caused by Phytophthora capsici and Alternaria alternata in sweet pepper plants. Biología Plantarum 47: 569-574.

Sid Ahmed A, Pérez Sánchez C & Candela ME, 2000. Evaluation of induction of systemic resistance in pepper plants (Capsicum annuum) to Phytophthora capsici using Trichoderma harzianum and its relation with capsidiol accumulation. European Journal of Plant Pathology 106: 817-824.

Sid Ahmed A, Pérez-Sanchez C, Ezziyyani M & Candela ME. 2001. Effect of Trichoderma harzianum treatments on systemic resistance in pepper plants (Capsicum annuum) to Phytophthora capsici and its relation with capsidiol accumulation. IOBC WPRS Bulletin 24: 265-269

Sid Ahmed A, Pérez-Sanchez C, Egea C & Candela ME. 1999. Evaluation of Trichoderma harzianum for controlling root rot caused by Phytophthora capsici in pepper plants. Plant Pathology 48: 58-65.

Sousa S, Rey M, Monte E & Llobell A. 2002. Clonación y análisis de los promotores de dos genes con alta expresión en Trichoderma harzianum. León: Actas del XXV Congreso de la SEBBM, España

Szczech M & Shoda M. 2006. The effect of mode of application of Bacillus subtilis RB14-C on its efficacy as a biocontrol agent against Rhizoctonia solani. J Phytopathol 154: 370-377.

Sztejnberg A, Freeman S, Chet I & Katan J. 1987. Control of Rosellinia necatrix in soil and apple orchard by solarisation and Trichoderma harzianum. Plant Disease 71: 365-369.

Wong, K.K.Y. & Saddler, J.N., 1992. Trichoderma xylanases, their properties and applications. Critical Review in Biotechnology 12: 413-435.

Yedidia I, Benhamou N & Chet I. 1999. Induction of defence responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Applied and Environmental Microbiology 65: 1061-1070.

Publicado
29-06-2011
Cómo citar
Ezziyyani, M. (2011). Mejora de la capacidad antifúngica in vitro e in vivo de un combinado de antagonistas compatibles frente a Phytophthora capsici Leonian. Anales de Biología, (33), 67–77. Recuperado a partir de https://revistas.um.es/analesbio/article/view/462351
Número
Sección
Artículos

Artículos más leídos del mismo autor/a