Mejora del rendimiento deportivo y del bienestar: el papel de la tecnología RFID en el monitoreo de la salud y la psicología del deporte
Resumen
Este estudio examinó la integración de la tecnología de identificación por radiofrecuencia (RFID) en la psicología del deporte para mejorar el monitoreo y el apoyo al rendimiento físico y mental de los atletas. La revisión se centró específicamente en las tecnologías utilizadas en contextos de rendimiento deportivo y psicología del deporte. Se consideraron dos grupos de tecnologías: 1) sensores portátiles y 2) sistemas basados en RFID. Mediante el uso de sensores portátiles habilitados con RFID, se puede realizar un seguimiento de los atletas de manera no intrusiva, proporcionando datos en tiempo real sobre marcadores fisiológicos como la frecuencia cardíaca, la temperatura de la piel y la actividad muscular, así como indicadores psicológicos como los niveles de estrés y los estados emocionales. La tecnología RFID permite la recopilación de datos sin contacto directo, ofreciendo nuevas posibilidades para comprender las complejas interacciones entre el esfuerzo físico y la resiliencia mental. Al combinar RFID con el Internet de las cosas (IoT), este enfoque permite un monitoreo continuo del rendimiento y retroalimentación personalizada, ayudando así a los atletas a optimizar sus estrategias de entrenamiento y recuperación. Este artículo destaca el potencial de RFID en la psicología del deporte, subrayando su capacidad para mejorar el bienestar y el rendimiento de los atletas mediante un monitoreo innovador e intervenciones personalizadas.
Descargas
-
Resumen153
-
PDF 36
Citas
1. Ahmad, W. N. W., Adib, M. A. H. M., Ahmad, Z., Zaihidee, F. M., & Txi, M. R. S. (2022). Integration of the Health Monitoring System with IoT Application in Sports Technology: A Review. Jurnal Kejuruteraan, 5(2), 101-109.
2. Ahmadihaji, A., Izquierdo, R., & Shih, A. (2023). From chip-based to chipless rfid sensors: a review. IEEE Sensors Journal, 23(11), 11356-11373.
3. Alzahrani, A., & Ullah, A. (2024). Advanced biomechanical analytics: Wearable technologies for precision health monitoring in sports performance. Digital Health, 10, 1-18. https://doi.org/10.1177/20552076241256745
4. Bardini, S., Ginestretti, L., Lazzari, J., & Santambrogio, M. D. (2024, July). Towards a Greater Awareness of the Relevance of Sleep and Physical Activity for Personal Well-Being. In 2024 IEEE International Workshop on Sport, Technology and Research (STAR) (pp. 109-114). IEEE. DOI: https://doi.org/10.1109/STAR62027.2024.10635937
5. Behera, S. K. (2021). Chipless RFID sensors for wearable applications: A review. IEEE Sensors Journal, 22(2), 1105-1120. https://doi.org/10.1109/JSEN.2021.3126487
6. Ben, X., Ren, Y., Zhang, J., Wang, S. J., Kpalma, K., Meng, W., & Liu, Y. J. (2021). Video based facial micro-expression analysis: A survey of datasets, features and algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(9), 5826-5846 https://doi.org/10.1109/TPAMI.2021.3067464
7. Biswas, S., Roy, M., Mondal, A., & Karmakar, R. (2024, May). Voice-Based Automated Detection of Mental Health Considering Comparative Performances of Multiple Machine Learning Models. In 2024 5th International Conference for Emerging Technology (INCET) (pp. 1-6). IEEE. https://doi.org/10.1109/INCET61516.2024.10592913
8. Cieśliński, W. B., Sobecki, J., Piepiora, P. A., Piepiora, Z. N., & Witkowski, K. (2016). Application of the augmented reality in prototyping the educational simulator in sport: The example of judo. Journal of Physics: Conference Series, 710(1), 1-8. https://doi.org/10.1088/1742-6596/710/1/012016
9. Civeriati, V., Pugliese, B. L., Carraro, C., Corniani, G., Bauducco, F., Angelucci, A., et al. (2024). A sensorized insole to estimate ground reaction forces and center of pressure during gait. In 2024 IEEE International Workshop on Sport, Technology and Research (STAR) (pp. 21–25). IEEE. https://doi.org/10.1109/STAR62027.2024.10636002
10. Colella, R., Mannini, L., Tumolo, M. R., Sabina, S., Molinaro, V., Ranavolo, A., et al. (2022). RFID-based sensing and reconstruction of human movements for safety monitoring of workers. In 2022 IEEE 12th International Conference on RFID Technology and Applications (RFID-TA) (pp. 184–186). IEEE. https://doi.org/10.1109/RFID-TA54958.2022.9924040
11. Colella, R., Sabina, S., Mincarone, P., & Catarinucci, L. (2023). Semi-passive RFID electronic devices with on-chip sensor fusion capabilities for motion capture and biomechanical analysis. IEEE Sensors Journal, 23(11), 11672-11681.
12. Cordeiro, M. C., Ó Catháin, C., & Rodrigues, T. B. (2022). The development of a machine learning/augmented reality immersive training system for performance monitoring in athletes. In Proceedings of the 14th International Workshop on Immersive Mixed and Virtual Environment Systems (pp. 19–22). https://doi.org/10.1145/3534086.3534332
13. Deshmukh, R. G., Pinjarkar, A., & Rana, A. K. (2022). IoT and wearable sensors for health monitoring. In Advanced sensing in image processing and IoT (pp. 137–152). CRC Press. https://doi.org/10.1201/9781003221333
14. Ding, Y., Tan, K., Sheng, L., Ren, H., Su, Z., Yang, H., Zhang, X., Li, J., & Hu, P. (2024). Integrated mental stress smartwatch based on sweat cortisol and HRV sensors. Biosensors & Bioelectronics, 265, 1-16. https://doi.org/10.1016/j.bios.2024.116691
15. Fullagar, H. H., Skorski, S., Duffield, R., Hammes, D., Coutts, A. J., & Meyer, T. (2015). Sleep and athletic performance: the effects of sleep loss on exercise performance, and physiological and cognitive responses to exercise. Sports Medicine, 45(2), 161-186. https://doi.org/10.1007/s40279-014-0260-0
16. Gaspari, F., & Quaranta, S. (2019). Nanostructured materials for RFID sensors. In Nanomaterials design for sensing applications (pp. 93–128). Elsevier. https://doi.org/10.1016/B978-0-12-814505-0.00003-5
17. Giles, S., Fletcher, D., Arnold, R., Ashfield, A., & Harrison, J. (2020). Measuring well-being in sport performers: where are we now and how do we progress?. Sports Medicine, 50(7), 1255-1270. https://doi.org/10.1016/B978-0-12-814505-0.00003-5
18. Gordon, A. M., & Mendes, W. B. (2021). A large-scale study of stress, emotions, and blood pressure in daily life using a digital platform. Proceedings of the National Academy of Sciences, 118(31), 1-7. https://doi.org/10.1073/pnas.2105573118
19. Han, L., & Hua, X. (2023). RFID Backscatter Based Sport Motion Sensing Using ECOC-Based SVM. Sensors, 23(17), 1-15. https://doi.org/10.3390/s23177324
20. Huifeng, W., Kadry, S. N., & Raj, E. D. (2020). Continuous health monitoring of sportsperson using IoT devices based wearable technology. Computer Communications, 160, 588-595. https://doi.org/10.1016/j.comcom.2020.04.025
21. Jerath, R., Syam, M., & Ahmed, S. (2023). The future of stress management: integration of smartwatches and HRV technology. Sensors, 23(17), 1-14. https://doi.org/10.3390/s23177314
22. Kim, S., Mariotti, C., Alimenti, F., Mezzanotte, P., Georgiadis, A., Collado, A., ... & Tentzeris, M. M. (2013). No battery required: Perpetual RFID-enabled wireless sensors for cognitive intelligence applications. IEEE Microwave Magazine, 14(5), 66-77. https://doi.org/10.1109/MMM.2013.2259398
23. Kovoor, M., Durairaj, M., Karyakarte, M. S., Hussain, M. Z., Ashraf, M., & Maguluri, L. P. (2024). Sensor-enhanced wearables and automated analytics for injury prevention in sports. Measurement Sensors, 32(19), 1-24. https://doi.org/10.1016/j.measen.2024.101054
24. Lange, D. H. (2021). U.S. Patent No. 10,952,638. Washington, DC: U.S. Patent and Trademark Office.
25. Lasantha, L., Khan, S. I., Ray, B., & Karmakar, N. C. (2024). Enhancing quality factor of chipless RFID sensors by optimising the substrate properties and resonator geometry. In 2024 IEEE International Conference on RFID (RFID) (pp. 125–130). IEEE. https://doi.org/10.1109/RFID62091.2024.10582558
26. Li, N., Zhou, R., Krishna, B., Pradhan, A., Lee, H., He, J., & Jiang, N. (2024). Non-invasive Techniques for Muscle Fatigue Monitoring: A Comprehensive Survey. ACM Computing Surveys, 56(9), 1-40. https://doi.org/10.1145/3648679
27. Li, R. T., Kling, S. R., Salata, M. J., Cupp, S. A., Sheehan, J., & Voos, J. E. (2016). Wearable performance devices in sports medicine. Sports Health, 8(1), 74-78. https://doi.org/10.1177/1941738115616917
28. Lin, J. (2024). Wearable Emotion Recognition Technology Based on Heart Rate Variability and EEG Rhythm. Transactions on Computer Science and Intelligent Systems Research, 5, 892-898. https://doi.org/10.62051/g4rwwf66
29. Miozzi, C., Errico, V., Marrocco, G., Gruppioni, E., & Saggio, G. (2020, June). RFID interface for compact pliable EMG wireless epidermal sensor. In 2020 IEEE International Workshop on Metrology for Industry 4.0 & IoT (pp. 202-206). IEEE. https://doi.org/10.1109/MetroInd4.0IoT48571.2020.9138182
30. Moniruzzaman, M., Yin, Z., Hossain, M. S. B., Choi, H., & Guo, Z. (2023). Wearable motion capture: Reconstructing and predicting 3D human poses from wearable sensors. IEEE Journal of Biomedical and Health Informatics, 27(11), 5345-5356. https://doi.org/10.1109/JBHI.2023.3311448
31. Mulloni, V., Marchi, G., Gaiardo, A., Valt, M., Donelli, M., & Lorenzelli, L. (2024). Applications of Chipless RFID Humidity Sensors to Smart Packaging Solutions. Sensors, 24(9), 1-12. https://doi.org/10.3390/s24092879
32. Nadeem, M., Habib, A., & Umair, M. Y. (2024). Chipless RFID based multi-sensor tag for printed electronics. Heliyon, 10(4), 1-17. https://doi.org/10.1016/j.heliyon.2024.e26494
33. Nguyen A. (2009). The potential implementation of radio-frequency identification technology for personal health examination and monitoring. McGill Journal of Medicine, 12(2), 67-72.
34. Occhiuzzi, C., Parrella, S., & Marrocco, G. (2020, August). Flexible dual chip on-skin RFID sensor for body temperature monitoring. In 2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS) (pp. 1-4). IEEE. https://doi.org/10.1109/FLEPS49123.2020.9239531
35. Plews, D. J., Laursen, P. B., Stanley, J., Kilding, A. E., & Buchheit, M. (2013). Training adaptation and heart rate variability in elite endurance athletes: opening the door to effective monitoring. Sports Medicine, 43, 773-781. https://doi.org/10.1007/s40279-013-0071-8
36. Qaim, W. B., Ometov, A., Molinaro, A., Lener, I., Campolo, C., Lohan, E. S., & Nurmi, J. (2020). Towards energy efficiency in the internet of wearable things: A systematic review. IEEE Access, 8, 175412-175435. https://doi.org/10.1109/ACCESS.2020.3025270
37. Raju, A. R., Ramadevi, R., Babu, P. R., & Vetriselvi, D. (2023, August). Galvanic Skin Response based Stress Detection System using Machine Learning and IoT. In 2023 Second International Conference on Augmented Intelligence and Sustainable Systems (ICAISS) (pp. 709-714). IEEE. https://doi.org/10.1109/ICAISS58487.2023.10250663
38. Rennane, A., Abdelnour, A., Kaddour, D., Touhami, R., & Tedjini, S. (2017, August). Development of passive UHF RFID tag on flexible foil for sport balls pressure monitoring. In 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS) (pp. 1-2). IEEE. https://doi.org/10.23919/URSIGASS.2017.8105164
39. Riente, A., Bianco, G. M., Fiore, L., Arduini, F., Marrocco, G., & Occhiuzzi, C. (2023, March). An RFID sensor with microfluidic for monitoring the pH of sweat during sport activity. In 2023 17th European Conference on Antennas and Propagation (EuCAP) (pp. 1-4). IEEE. https://doi.org/10.23919/EuCAP57121.2023.10133044
40. Roh, S., Nguyen, T. D., & Lee, J. S. (2024). Applications of Nanomaterials in RFID Wireless Sensor Components. Applied Sciences, 14(3), 1-28. https://doi.org/10.3390/app14031216
41. Satapathy, C., Gokhale, H., Syed, A. Z., & Nersisson, R. (2024, March). Galvanic skin response-based stress level detection using supervised machine learning approach. In AIP Conference Proceedings (Vol. 2966, No. 1). AIP Publishing. https://doi.org/10.1063/5.0189783
42. Scarpellini, A., Aliverti, A., & Esmailbeigi, H. (2024, July). A Wireless Intra-Oral Device for Respiratory and Cardiovascular Monitoring in Sport. In 2024 IEEE International Workshop on Sport, Technology and Research (STAR) (pp. 176-180). IEEE. https://doi.org/10.1109/STAR62027.2024.10635949
43. Seçkin, A. Ç., Ateş, B., & Seçkin, M. (2023). Review on Wearable Technology in sports: Concepts, Challenges and opportunities. Applied Sciences, 13(18), 1-39. https://doi.org/10.3390/app131810399
44. Seshadri, D. R., Li, R. T., Voos, J. E., Rowbottom, J. R., Alfes, C. M., Zorman, C. A., & Drummond, C. K. (2019). Wearable sensors for monitoring the internal and external workload of the athlete. NPJ Digital Medicine, 2, 1-12. https://doi.org/10.1038/s41746-019-0149-2
45. Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and norms. Frontiers in Public Health, 5, 1-17. https://doi.org/10.3389/fpubh.2017.00258
46. Shah, J. V., Lautner, D. A., & Hor-Lao, M. K. (2017). U.S. Patent No. 9,740,899. Washington, DC: U.S. Patent and Trademark Office. https://patents.google.com/patent/US9740899B1/en
47. Shen, X., Shi, G., Cheng, L., Gu, L., Rao, Y., & He, Y. (2023). Chipless RFID-inspired Sensing for Smart Agriculture: A Review. Sensors and Actuators A: Physical, 363, 1-19. https://doi.org/10.1016/j.sna.2023.114725
48. Simbolon, M. E. M., Firdausi, D. K. A., Dwisaputra, I., Rusdiana, A., Pebriandani, C., & Prayoga, R. (2023). Utilization of Sensor technology as a Sport Technology Innovation in Athlete Performance Measurement: Research Trends. IJEIS (Indonesian Journal of Electronics and Instrumentation Systems), 13(2), 147-158. https://doi.org/10.22146/ijeis.89581
49. Song, Y., Min, J., Yu, Y., Wang, H., Yang, Y., Zhang, H., & Gao, W. (2020). Wireless battery-free wearable sweat sensor powered by human motion. Science Advances, 6(40), 1-12. https://doi.org/10.1126/sciadv.aay9842
50. Subrahmannian, A., & Behera, S. K. (2022). Chipless RFID sensors for IoT-based healthcare applications: A review of state of the art. IEEE Transactions on Instrumentation and Measurement, 71, 1-20. https://doi.org/10.1109/TIM.2022.3180422
51. Tariq, M. U. (2024). Advanced wearable medical devices and their role in transformative remote health monitoring. In Transformative Approaches to Patient Literacy and Healthcare Innovation (pp. 308-326). IGI Global. https://doi.org/10.4018/979-8-3693-3661-8.ch015
52. Wang, T., Dai, S., Liu, Y., & Ye, T. T. (2022). Battery-less sensing of body movements through differential backscattered RFID signals. IEEE Sensors Journal, 22(9), 8490-8498. https://doi.org/10.1109/JSEN.2022.3161406
53. Waqar, A., Ahmad, I., Habibi, D., & Phung, Q. V. (2021). Analysis of GPS and UWB positioning system for athlete tracking. Measurement: Sensors, 14(3), 1-16. https://doi.org/10.1016/j.measen.2020.100036
54. Wu, Y., Valdez, R., & Forlines, C. (2023, March). Cognitive and Emotional Monitoring with Inexpensive Wrist-Worn Consumer-Grade Wearables. In 2023 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops) (pp. 665-670). IEEE. https://doi.org/10.1109/PerComWorkshops56833.2023.10150338
55. Xu, Q., Liu, X., Luo, J., & Tang, Z. (2020). Emotion monitoring with RFID: An experimental study. CCF Transactions on Pervasive Computing and Interaction, 2(4), 299-313. https://doi.org/10.1007/s42486-020-00043-1
56. Yan, D., Sun, X., Hu, S., & Zhang, K. (2023, November). Chipless RFID Humidity Sensor Based on Rectangular-Stub-Loaded SRR. In 2023 China Automation Congress (CAC) (pp. 539-543). IEEE. https://doi.org/10.1109/CAC59555.2023.10450927
57. Yu, Y., Qi, Z., Yi, D., Tang, M. C., & Ziolkowski, R. W. (2023). Miniaturized and highly sensitive epidermal RFID sensor for reliable skin temperature monitoring at a distance. IEEE Sensors Journal, 23(6), 5757-5765. https://doi.org/10.1109/JSEN.2023.3241155
58. Zhu, J. (2023). Real-time monitoring for sport and mental health prevention of college student based on wireless sensor network. Preventive Medicine, 173, 1-17. https://doi.org/10.1016/j.ypmed.2023.107581
Las obras que se publican en esta revista están sujetas a los siguientes términos:
1. El Servicio de Publicaciones de la Universidad de Murcia (la editorial) conserva los derechos patrimoniales (copyright) de las obras publicadas, y favorece y permite la reutilización de las mismas bajo la licencia de uso indicada en el punto 2.
© Servicio de Publicaciones, Universidad de Murcia, 2013
2. Las obras se publican en la edición electrónica de la revista bajo una licencia Creative Commons Reconocimiento-NoComercial-SinObraDerivada 3.0 España (texto legal). Se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que: i) se cite la autoría y la fuente original de su publicación (revista, editorial y URL de la obra); ii) no se usen para fines comerciales; iii) se mencione la existencia y especificaciones de esta licencia de uso.
3. Condiciones de auto-archivo. Se permite y se anima a los autores a difundir electrónicamente las versiones pre-print (versión antes de ser evaluada) y/o post-print (versión evaluada y aceptada para su publicación) de sus obras antes de su publicación, ya que favorece su circulación y difusión más temprana y con ello un posible aumento en su citación y alcance entre la comunidad académica.

















