Disminución de los niveles de HOMA-IR después del ejercicio físico como terapia para reducir la resistencia a la insulina: Una revisión sistemática
Resumen
Un estilo de vida sedentario puede aumentar el riesgo de enfermedades metabólicas como la diabetes mellitus. El objetivo de este estudio fue determinar cómo la actividad física reduce la resistencia a la insulina mediante la disminución de los niveles de HOMA-IR. Este estudio también proporciona una base teórica para el uso del ejercicio físico en la prevención de la resistencia a la insulina en humanos. Para nuestra revisión sistemática, buscamos en varias bases de datos bibliográficas (PubMed, Web of Science y ScienceDirect) artículos publicados en los últimos cinco años que examinaran la actividad física y el HOMA-IR. Se identificaron un total de 422 artículos publicados a través de las bases de datos Web of Science, PubMed y ScienceDirect. Diez artículos que cumplían con los criterios de inclusión fueron seleccionados y analizados para esta revisión sistemática. En este estudio se utilizaron las directrices PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) para garantizar procedimientos metodológicos estandarizados. Se ha demostrado que el ejercicio regular reduce la resistencia a la insulina al disminuir los valores de HOMA-IR. Asimismo, se ha comprobado que el ejercicio físico es una de las mejores terapias para las personas con enfermedades metabólicas, especialmente para la resistencia a la insulina. El ejercicio físico ha mostrado reducir significativamente la resistencia a la insulina mediante la disminución de los niveles de HOMA-IR. Por lo tanto, se recomienda firmemente la práctica regular de ejercicio físico como la mejor terapia para la resistencia a la insulina en humanos.
Descargas
-
Resumen0
-
PDF 0
Citas
1. Amanat, S., Sinaei, E., Panji, M., MohammadporHodki, R., Bagheri-Hosseinabadi, Z., Asadimehr, H., … Dianatinasab, A. (2020). A Randomized Controlled Trial on the Effects of 12 Weeks of Aerobic, Resistance, and Combined Exercises Training on the Serum Levels of Nesfatin-1, Irisin-1 and HOMA-IR. Frontiers in Physiology, 11, 1–14. https://doi.org/10.3389/fphys.2020.562895
2. Asfaw, M. S., & Dagne, W. K. (2022). Physical activity can improve diabetes patients’ glucose control; A systematic review and meta-analysis. Heliyon, 8(12), 1-12. https://doi.org/10.1016/j.heliyon.2022.e12267
3. Ayubi, N., Wibawa, J. C., Lesmana, H. S., Callixte, C., & Dafun, P. B. (2024). Physical exercise induces increased translocation of type 4 glucose transporters (GLUT4): a systematic review. Retos, 59, 1003–1008. https://doi.org/10.47197/retos.v59.104078
4. Bacchi, E., Negri, C., Zanolin, M. E., Milanese, C., Faccioli, N., Trombetta, M., … Moghetti, P. (2012). Metabolic effects of aerobic training and resistance training in type 2 diabetic subjects: A randomized controlled trial (the RAED2 study). Diabetes Care, 35(4), 676–682. https://doi.org/10.2337/dc11-1655
5. Balakrishnan, R., & Thurmond, D. C. (2022). Mechanisms by Which Skeletal Muscle Myokines Ameliorate Insulin Resistance. International Journal of Molecular Sciences, 23(9), 1-24. https://doi.org/10.3390/ijms23094636
6. Bradley, H., Shaw, C. S., Bendtsen, C., Worthington, P. L., Wilson, O. J., Strauss, J. A., … Wagenmakers, A. J. M. (2015). Visualization and quantitation of GLUT4 translocation in human skeletal muscle following glucose ingestion and exercise. Physiological Reports, 3(5), 1–11. https://doi.org/10.14814/phy2.12375
7. Calcaterra, V., Magenes, V. C., Bianchi, A., Rossi, V., Gatti, A., Marin, L., Vandoni, M., & Zuccotti, G. (2024). How Can Promoting Skeletal Muscle Health and Exercise in Children and Adolescents Prevent Insulin Resistance and Type 2 Diabetes?. Life, 14(9), 1-30. https://doi.org/10.3390/life14091198
8. Care, D., & Suppl, S. S. (2024). 3. Prevention or Delay of Diabetes and Associated Comorbidities: Standards of Care in Diabetes—2024. Diabetes Care, 47, 43–51. https://doi.org/10.2337/dc24-S003
9. Yu, Y. T., Fu, Y. H., Chen, Y. H., Fang, Y. W., & Tsai, M. H. (2025). Effect of dietary glycemic index on insulin resistance in adults without diabetes mellitus: a systematic review and meta-analysis. Frontiers in Nutrition, 12, 1-12. https://doi.org/10.3389/fnut.2025.1458353
10. Chen, M., Zhu, J. Y., Mu, W. J., Luo, H. Y., Li, Y., Li, S., Yan, L. J., Li, R. Y., & Guo, L. (2023). Cdo1-Camkk2-AMPK axis confers the protective effects of exercise against NAFLD in mice. Nature Communications, 14(1), 1–19. https://doi.org/10.1038/s41467-023-44242-7
11. Das, A. M., Steuerwald, U., & Illsinger, S. (2010). Inborn errors of energy metabolism associated with myopathies. Journal of Biomedicine and Biotechnology, 2010, 1-21. https://doi.org/10.1155/2010/340849
12. Garg, V., Ghay, R., Goyal, G., & Saini, R. V. (2025). Exploring the Role of Acute Exercise-Induced Myokine Release in Glucose Metabolism and Insulin Sensitivity in Healthy and Diabetic Individuals. Cureus, 17(2), 1–10. https://doi.org/10.7759/cureus.78991
13. Gejl, K. D., Andersson, E. P., Nielsen, J., Holmberg, H. C., & Ørtenblad, N. (2020). Effects of Acute Exercise and Training on the Sarcoplasmic Reticulum Ca2+ Release and Uptake Rates in Highly Trained Endurance Athletes. Frontiers in Physiology, 11, 1–11. https://doi.org/10.3389/fphys.2020.00810
14. Ghahfarrokhi, M. M., Shirvani, H., Rahimi, M., Bazgir, B., Shamsadini, A., & Sobhani, V. (2024). Feasibility and preliminary efficacy of different intensities of functional training in elderly type 2 diabetes patients with cognitive impairment: a pilot randomised controlled trial. BMC Geriatrics, 24(1), 1–15. https://doi.org/10.1186/s12877-024-04698-8
15. Ha, M. S., Yook, J. S., & Lee, M. (2024). Effects of 16-Week Exercise on Insulin, HOMA-IR, and Glucose Levels in Obese Childhood. Exercise Science, 33(3), 310–316. https://doi.org/10.15857/ksep.2024.00423
16. Iaccarino, G., Franco, D., Sorriento, D., Strisciuglio, T., Barbato, E., & Morisco, C. (2021). Modulation of Insulin Sensitivity by Exercise Training: Implications for Cardiovascular Prevention. Journal of Cardiovascular Translational Research, 14(2), 256–270. https://doi.org/10.1007/s12265-020-10057-w
17. Kartinah, N. T., Rusli, H., Ilyas, E. I. I., Andraini, T., & Paramita, N. (2024). High-intensity interval training increases AMPK and GLUT4 expressions via FGF21 in skeletal muscles of diabetic rats. Journal of Advanced Biotechnology and Experimental Therapeutics, 7(1), 136–146.
18. Katsuki, A., Sumida, Y., Gabazza, E. C., Murashima, S., Furuta, M., Araki-Sasaki, R., … Adachi, Y. (2001). Homeostasis model assessment is a reliable indicator of insulin resistance during follow-up of patients with type 2 diabetes. Diabetes Care, 24(2), 362–365. https://doi.org/10.2337/diacare.24.2.362
19. Khalili, D., Khayamzadeh, M., Kohansal, K., Ahanchi, N. S., Hasheminia, M., Hadaegh, F., … Habibi-Moeini, A. S. (2023). Are HOMA-IR and HOMA-B good predictors for diabetes and pre-diabetes subtypes? BMC Endocrine Disorders, 23(1), 1–9. https://doi.org/10.1186/s12902-023-01291-9
20. Lee, J., Kim, M., Jang, J.-Y., & Oh, C.-M. (2023). Assessment HOMA as a predictor for new onset diabetes mellitus and diabetic complications in non-diabetic adults: a KoGES prospective cohort study. Clinical Diabetes and Endocrinology, 9(1), 1–8. https://doi.org/10.1186/s40842-023-00156-3
21. Lee, S. H., Park, S. Y., & Choi, C. S. (2022). Insulin Resistance: From Mechanisms to Therapeutic Strategies. Diabetes and Metabolism Journal, 46(1), 15–37. https://doi.org/10.4093/DMJ.2021.0280
22. Li, S., Yuan, S., Zhang, J., Xu, F., & Zhu, F. (2024). The effect of periodic resistance training on obese patients with type 2 diabetic nephropathy. Scientific Reports, 14(1), 1–12. https://doi.org/10.1038/s41598-024-53333-4
23. Loyd, C., Magrisso, I. J., Haas, M., Balusu, S., Krishna, R., Itoh, N., … Habegger, K. M. (2016). Fibroblast growth factor 21 is required for beneficial effects of exercise during chronic high-fat feeding. Journal of Applied Physiology, 121(3), 687–698. https://doi.org/10.1152/japplphysiol.00456.2016
24. Matthews, D. R., Hosker, J. P., Rudenski, A. S., Naylor, B. A., Treacher, D. F., & Turner, R. C. (1985). Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 28(7), 412–419. https://doi.org/10.1007/BF00280883
25. Meng, C., Yucheng, T., Shu, L., & Yu, Z. (2022). Effects of school-based high-intensity interval training on body composition, cardiorespiratory fitness and cardiometabolic markers in adolescent boys with obesity: a randomized controlled trial. BMC Pediatrics, 22(1), 1–11. https://doi.org/10.1186/s12887-021-03079-z
26. Mezghani, N., Ammar, A., Boukhris, O., Abid, R., Hadadi, A., Alzahrani, T. M., … Chtourou, H. (2022). The Impact of Exercise Training Intensity on Physiological Adaptations and Insulin Resistance in Women with Abdominal Obesity. Healthcare, 10(12), 1–17. https://doi.org/10.3390/healthcare10122533
27. Michishita, R., Shono, N., Kasahara, T., & Tsuruta, T. (2008). Effects of low intensity exercise therapy on early phase insulin secretion in overweight subjects with impaired glucose tolerance and type 2 diabetes mellitus. Diabetes Research and Clinical Practice, 82(3), 291–297. https://doi.org/10.1016/j.diabres.2008.08.013
28. Misra, A., Alappan, N. K., Vikram, N. K., Goel, K., Gupta, N., Mittal, K., … Luthra, K. (2008). Effect of supervised progressive resistance-exercise training protocol on insulin sensitivity, glycemia, lipids, and Body composition in asian indians with type 2 diabetes. Diabetes Care, 31(7), 1282–1287. https://doi.org/10.2337/dc07-2316
29. Moffa, S., Sorice, G. P., Di Giuseppe, G., Cinti, F., Ciccarelli, G., Soldovieri, L., Brunetti, M., Sonnino, R., Nista, E. C., Gasbarrini, A., Pontecorvi, A., Mezza, T., & Giaccari, A. (2025). A single bout of physical exercise improves 1-hour post-load plasma glucose in healthy young adults. Journal of Endocrinological Investigation, 48(2), 455–464. https://doi.org/10.1007/s40618-024-02438-8
30. Nellaiappan, K., Preeti, K., Khatri, D. K., & Singh, S. B. (2021). Diabetic Complications: An Update on Pathobiology and Therapeutic Strategies. Current Diabetes Reviews, 18(1), 1–14. https://doi.org/10.2174/1573399817666210309104203
31. Okabe, K., Yaku, K., Tobe, K., & Nakagawa, T. (2019). Implications of altered NAD metabolism in metabolic disorders. Journal of Biomedical Science, 26(1), 1–13. https://doi.org/10.1186/s12929-019-0527-8
32. Richter, E. A., & Hargreaves, M. (2013). Exercise, GLUT4, and skeletal muscle glucose uptake. Physiological Reviews, 93(3), 993–1017. https://doi.org/10.1152/physrev.00038.2012
33. Sakamoto, K., & Holman, G. D. (2008). Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic. American Journal of Physiology - Endocrinology and Metabolism, 295(1), 29–37. https://doi.org/10.1152/ajpendo.90331.2008
34. Sorriento, D., Di Vaia, E., & Iaccarino, G. (2021). Physical Exercise: A Novel Tool to Protect Mitochondrial Health. Frontiers in Physiology, 12, 1–14. https://doi.org/10.3389/fphys.2021.660068
35. Strasser, B., & Pesta, D. (2013). Resistance training for diabetes prevention and therapy: Experimental findings and molecular mechanisms. BioMed Research International, 2013(4), 1-8. https://doi.org/10.1155/2013/805217
36. Takahashi, A., Furuta, H., Nishi, H., Kamei, H., Takahashi, S. I., & Hakuno, F. (2025). Insulin Receptor Substrate-2 Regulates the Secretion of Growth Factors in Response to Amino Acid Deprivation. International Journal of Molecular Sciences, 26(2), 1-15. https://doi.org/10.3390/ijms26020841
37. Thong, F. S. L., Bilan, P. J., & Klip, A. (2007). The Rab GTPase-activating protein AS160 integrates Akt, protein kinase C, and AMP-activated protein kinase signals regulating GLUT4 traffic. Diabetes, 56(2), 414–423. https://doi.org/10.2337/db06-0900
38. Tokumitsu, H., & Sakagami, H. (2022). Molecular Mechanisms Underlying Ca2+/Calmodulin-Dependent Protein Kinase Kinase Signal Transduction. International Journal of Molecular Sciences, 23(19), 1-19. https://doi.org/10.3390/ijms231911025
39. Tambuwal, U. M., Ahmad, S. A., Hayatu, U., Sadiq, M. A., Kolawale, J. A., Bello, S. K., & Umar, A. F. (2024). Exploring the Effect of Exercise versus Metformin on Insulin Resistance amongst Nigerians with Pre-diabetes: A Randomised Controlled Trial. The Nigerian Postgraduate Medical Journal, 31(3), 274–279. https://doi.org/10.4103/npmj.npmj_148_24
40. Wheeler, D. C., James, J., Patel, D., Viljoen, A., Ali, A., Evans, M., … Wilding, J. (2020). SGLT2 Inhibitors: Slowing of Chronic Kidney Disease Progression in Type 2 Diabetes. Diabetes Therapy, 11(12), 2757–2774. https://doi.org/10.1007/s13300-020-00930-x
41. World Health Organization. (2021). Global health estimates: Leading causes of death and disability. https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death
42. Wang, X., Zheng, M., Qin, S., Li, Y., & Xu, H. (2025). Effects of aerobic vs combined aerobic and resistance exercise training on maternal glucose metabolism, sympathetic nervous system control and cardiovascular hemodynamics in women with overweight/obesity during pregnancy. Ginekologia Polska, 96(3), 184–191. https://doi.org/10.5603/gpl.102215
43. Yunn, N. O., Kim, J., Ryu, S. H., & Cho, Y. (2023). A stepwise activation model for the insulin receptor. Experimental and Molecular Medicine, 55(10), 2147–2161. https://doi.org/10.1038/s12276-023-01101-1
Las obras que se publican en esta revista están sujetas a los siguientes términos:
1. El Servicio de Publicaciones de la Universidad de Murcia (la editorial) conserva los derechos patrimoniales (copyright) de las obras publicadas, y favorece y permite la reutilización de las mismas bajo la licencia de uso indicada en el punto 2.
© Servicio de Publicaciones, Universidad de Murcia, 2013
2. Las obras se publican en la edición electrónica de la revista bajo una licencia Creative Commons Reconocimiento-NoComercial-SinObraDerivada 3.0 España (texto legal). Se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que: i) se cite la autoría y la fuente original de su publicación (revista, editorial y URL de la obra); ii) no se usen para fines comerciales; iii) se mencione la existencia y especificaciones de esta licencia de uso.
3. Condiciones de auto-archivo. Se permite y se anima a los autores a difundir electrónicamente las versiones pre-print (versión antes de ser evaluada) y/o post-print (versión evaluada y aceptada para su publicación) de sus obras antes de su publicación, ya que favorece su circulación y difusión más temprana y con ello un posible aumento en su citación y alcance entre la comunidad académica.

















