Uso de la Wii Balance Board como mecanismo de reconocimiento y clasificación del riesgo de caídas en el adulto mayor

Autores/as

  • Leónidas Arias-Poblete Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago de Chile 7591538, Chile.
  • Sebastián Álvarez‐Arangua Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago de Chile 7591538, Chile.
  • Catalina Pezo-Mora Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago de Chile 7591538, Chile. |Universidad Autónoma de Chile (Chile).
  • Daniel Jerez-Mayorga Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago de Chile 7591538, Chile. | Strength & Conditioning Laboratory, CTS-642 Research Group, Department Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
  • Matías Orellana Donoso Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago de Chile 7591538, Chile.
  • Paloma Ferrero-Hernández Facultad de Educación y Cultura, Universidad SEK, Santiago 7520318, Chile
  • Gerson Ferrari Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Providencia 7500912, Chile. | Sciences of Physical Activity, Sports and Health School, University of Santiago of Chile (USACH), Santiago, 9170022, Chile
  • Claudio Farías‐Valenzuela Instituto del Deporte, Universidad de las Américas, Santiago 9170022, Chile.
DOI: https://doi.org/10.6018/sportk.571561
Palabras clave: Adulto mayor, Riesgo de caídas, Equilibrio, Máquina de Soporte Vectorial

Resumen

Introducción: En la práctica clínica las pruebas funcionales utilizadas para evaluar el riesgo de caídas requieren de técnicas y elementos de precisión que eviten la subjetividad. El uso de la Wii Balance Board (WBB) es una alternativa ante lo expuesto, ya que es una herramienta económica, portátil y que permite extraer variables que se relacionan con el fenómeno en estudio.

Objetivo: Clasificar las variables derivadas del centro de presión (CoP) durante la evaluación del control postural por medio de la WBB, en adultos mayores con y sin riesgo de caídas.

Métodos: Se utilizó un diseño de investigación descriptivo. Se estudió a 40 adultos mayores, 20 con y 20 sin riesgo de caídas. El control postural fue evaluado mediante la WBB, extrayendo variables cinéticas y cinemáticas, que permitieron implementar un selector de atributos y el algoritmo SVM (SVMs, del inglés Support Vector Machines), identificando a los adultos mayores con riesgo de caídas.

Resultados: Las variables que mejor permiten clasificar a los adultos mayores con y sin riesgo de caída fueron la velocidad, desplazamiento y fuerza media. Se construyó un clasificador de dos clases, cuyo mejor desempeño fue el índice Kappa 0,95 (fuerza de concordancia casi perfecta), sensibilidad 98%, y especificidad 100%.

Conclusiones: El uso de WBB puede ser considerada una alternativa de bajo costo para la evaluación del riesgo de caídas en adultos mayores.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Agrawal, Y., Van de Berg, R., Wuyts, F., Walther, L., Magnusson, M., Oh, E., Sharpe, M., & Strupp, M. (2019). Presbyvestibulopathy: Diagnostic criteria Consensus document of the classification committee of the Bárány Society. Journal of Vestibular Research, 29(4), 161-170.

Almohaisen, N., Gittins, M., Todd, C., Sremanakova, J., Sowerbutts, A. M., Aldossari, A., Almutairi, A., Jones, D., & Burden, S. (2022). Prevalence of Undernutrition, Frailty and Sarcopenia in Community-Dwelling People Aged 50 Years and Above: Systematic Review and Meta-Analysis. Nutrients, 14(8), 1537. https://doi.org/10.3390/nu14081537

Baydan, M., Caliskan, H., Balam-Yavuz, B., Aksoy, S., & Böke, B. (2020). The interaction between mild cognitive impairment with vestibulo-ocular reflex, dynamic visual acuity and postural balance in older adults. Experimental Gerontology, 130, 110785.

Beauchet, O., Fantino, B., Allali, G., Muir, S., Montero-Odasso, M., & Annweiler, C. (2011). Timed Up and Go test and risk of falls in older adults: a systematic review. The journal of nutrition, health & aging, 15(10), 933-938.

Bergamin, M., Gobbo, S., Zanotto, T., Sieverdes, J. C., Alberton, C. L., Zaccaria, M., & Ermolao, A. (2014). Influence of age on postural sway during different dual-task conditions. Frontiers in aging neuroscience, 6, 271.

Calderón, D. M., & Ulloa, J. R. (2016). Changes associated with aging in angular kinematic parameters during a controlled speed walk. Revista médica de Chile, 144(1), 74-82.

Cerda, A. L. (2014). Manejo del trastorno de marcha en el Adulto Mayor. Revista Médica Sinergia, p. 265-275.

Clark, R. A., Bryant, A. L., Pua, Y., McCrory, P., Bennell, K., & Hunt, M. (2010). Validity and reliability of the Nintendo Wii Balance Board for assessment of standing balance. Gait & posture, 31(3), 307-310.

Elmgren Frykberg, G., Lindmark, B., Lanshammar, H., & Borg, J. (2007). Correlation between clinical assessment and force plate measurement of postural control after stroke. Journal of Rehabilitation Medicine, 39(6), 448-453.

SENAMA. (Censo 2017). Censo de la población chilena es adulto mayor. http://www.senama.gob.cl/noticias/censo-2017-revelo-que-mas-del-16-de-la-poblacion-chilena-es-adulto-mayor

Franco-Gutiérrez, V., & Pérez-Vázquez, P. (2020). Rehabilitación vestibular en personas mayores con disfunción vestibular. Revista ORL, 11(1), 67-78.

Fujimoto, C., Egami, N., Demura, S., Yamasoba, T., & Iwasaki, S. (2015). The effect of aging on the center-of-pressure power spectrum in foam posturography. Neuroscience letters, 585, 92-97.

Gazibara, T., Kurtagic, I., Kisic‐Tepavcevic, D., Nurkovic, S., Kovacevic, N., Gazibara, T., & Pekmezovic, T. (2017). Falls, risk factors and fear of falling among persons older than 65 years of age. Psychogeriatrics, 17(4), 215-223.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software: an update. ACM SIGKDD explorations newsletter, 11(1), 10-18.

Henry, M., & Baudry, S. (2019). Age-related changes in leg proprioception: implications for postural control. Journal of neurophysiology, 122(2), 525–538. https://doi.org/10.1152/jn.00067.2019

Herman, T., Giladi, N., & Hausdorff, J. M. (2011). Properties of the ‘timed up and go’test: more than meets the eye. Gerontology, 57(3), 203-210.

Hodges, P. W. (2011). Pain and motor control: from the laboratory to rehabilitation. Journal of Electromyography and Kinesiology, 21(2), 220-228.

Hong, S. K., Park, J. H., Kwon, S. Y., Kim, J.-S., & Koo, J.-W. (2015). Clinical efficacy of the Romberg test using a foam pad to identify balance problems: a comparative study with the sensory organization test. European archives of oto-rhino-laryngology, 272(10), 2741-2747.

Howcroft, J., Lemaire, E. D., Kofman, J., & McIlroy, W. E. (2017). Elderly fall risk prediction using static posturography. PLoS one, 12(2), e0172398.

Howcroft, J. D., Kofman, J., Lemaire, E., & McIlroy, W. (2015). Static posturography of elderly fallers and non-fallers with eyes open and closed. World Congress on Medical Physics and Biomedical Engineering, June 7-12, 2015, Toronto, Canada,

Hsiao-Wecksler, E. T., Katdare, K., Matson, J., Liu, W., Lipsitz, L. A., & Collins, J. J. (2003). Predicting the dynamic postural control response from quiet-stance behavior in elderly adults. Journal of Biomechanics, 36(9), 1327-1333.

Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. biometrics, 159-174.

Lichtenstein, M. J., Shields, S. L., Shiavi, R. G., & Burger, M. C. (1988). Clinical determinants of biomechanics platform measures of balance in aged women. Journal of the American Geriatrics Society, 36(11), 996-1002.

López, R., Mancilla, E., Villalobos, A., & Herrera, P. (2010). Manual de prevención de caídas en el adulto mayor. Gobierno de Chile, Ministerio de salud.

Maki, B. E., Holliday, P. J., & Topper, A. K. (1991). Fear of falling and postural performance in the elderly. Journal of gerontology, 46(4), M123-M131.

Masani, K., Popovic, M. R., Nakazawa, K., Kouzaki, M., & Nozaki, D. (2003). Importance of body sway velocity information in controlling ankle extensor activities during quiet stance. Journal of neurophysiology, 90(6), 3774-3782.

MINSAL. (2019). Manual de Prevención de Caídas en el Adulto Mayor https://www.minsal.cl/portal/url/item/ab1f8c5957eb9d59e04001011e016ad7.pdf

MINSAL. (2012). Manual de Aplicación del Examen de Medicina Preventiva del Adulto Mayor.

Osoba, M. Y., Rao, A. K., Agrawal, S. K., & Lalwani, A. K. (2019). Balance and gait in the elderly: A contemporary review. Laryngoscope investigative otolaryngology, 4(1), 143–153. https://doi.org/10.1002/lio2.252

Piirtola, M., & Era, P. (2006). Force platform measurements as predictors of falls among older people–a review. Gerontology, 52(1), 1-16.

Quijoux, F., Vienne-Jumeau, A., Bertin-Hugault, F., Lefèvre, M., Zawieja, P., Vidal, P.-P., & Ricard, D. (2019). Center of pressure characteristics from quiet standing measures to predict the risk of falling in older adults: a protocol for a systematic review and meta-analysis. Systematic reviews, 8(1), 1-9.

Rojas, C., Buckcanan, A., & Benavides, G. (2019). Sarcopenia: abordaje integral del adulto mayor. Revista Médica Sinergia, 4(5), 24-34.

Rydwik, E., Bergland, A., Forsén, L., & Frändin, K. (2011). Psychometric properties of timed up and go in elderly people: a systematic review. Physical & Occupational Therapy in Geriatrics, 29(2), 102-125.

Schoene, D., Wu, S. M. S., Mikolaizak, A. S., Menant, J. C., Smith, S. T., Delbaere, K., & Lord, S. R. (2013). Discriminative ability and predictive validity of the timed Up and Go test in identifying older people who fall: systematic review and meta‐analysis. Journal of the American Geriatrics Society, 61(2), 202-208.

SENADIS. (01 de mayo de 2018). II Estudio Nacional de la Discapacidad. https://www.senadis.gob.cl/pag/306/1570/publicaciones.

Simka, M., & Skuła, M. (2019). Potential involvement of impaired venous outflow from the brain in neurodegeneration: Lessons learned from the research on chronic cerebrospinal venous insufficiency. Reviews on recent clinical trials, 14(4), 235-236.

Smith, P. F., Zheng, Y., Horii, A., & Darlington, C. L. (2005). Does vestibular damage cause cognitive dysfunction in humans? Journal of Vestibular Research, 15(1), 1-9.

Sousa, L. M. M., Marques-Vieira, C. M. A., de Caldevilla, M. N. G. N., Henriques, C. M. A. D., Severino, S. S. P., & Caldeira, S. (2016). Instrumentos para evaluación del riesgo de caídas en los ancianos residentes en la comunidad. Enfermería Global, 15(2), 490-521.

Vapnik, V. (1999). The nature of statistical learning theory. Springer science & business media.

Vickers, N. J. (2017). Animal communication: when i’m calling you, will you answer too? Current biology, 27(14), R713-R715.

Zia, A., Kamaruzzaman, S. B., & Tan, M. P. (2015). Polypharmacy and falls in older people: Balancing evidence-based medicine against falls risk. Postgraduate medicine, 127(3), 330–337. https://doi.org/10.1080/00325481.2014.996112

Publicado
26-05-2023
Cómo citar
Arias-Poblete, L. ., Álvarez‐Arangua, S. ., Pezo-Mora, C. ., Jerez-Mayorga, D. ., Orellana Donoso, M. ., Ferrero-Hernández, P. ., … Farías‐Valenzuela, C. . (2023). Uso de la Wii Balance Board como mecanismo de reconocimiento y clasificación del riesgo de caídas en el adulto mayor . SPORT TK-Revista EuroAmericana de Ciencias del Deporte, 12, 3. https://doi.org/10.6018/sportk.571561
Número
Sección
Artículos