Alterations in plantar pressure after a protocol of neuromuscular fatigue in isoinertial machine

Authors

DOI: https://doi.org/10.6018/sportk.432111

Abstract

The objective of the present study sought to establish the differences presented in the plantar footprint after applying a neuromuscular fatigue protocol. A total of 10 healthy male athletes with an approximate age of 21 years were evaluated for the morphological component, with the Tanita BC585F® equipment (variables: weight Kg, fat KG, muscle Kg and bone Kg). In the fatigue protocol, the isoinertial Squat RSP® equipment was used. For the baropodometry test, both in the pre-test and in the post-test, the EcoWalk equipment was used. R-Type® pressure variables were taken for both feet, such as mean pressure, contact surface, anterior, posterior, right lateral and left lateral distribution. No significant differences were found in the pre and post test of the baropodometry test with a p> 0.05. Significant correlations were found between the morphological component and the baropodometry with a p <0.05.

Downloads

Download data is not yet available.

Author Biography

Leonardo Rodriguez Perdomo, Independiente

Leonardo Rodriguez Perdomo Mag. ciencias y Tecnologías del Deporte y la Actividad Física Pro. Cultura Física y Deporte Docente Investigador Cel: 3123639369 http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000012230  

References

Alves, R., Borel, W. P., Rossi, B. P., Vicente, E. J. D., Chagas, P. S. de C., & Felício, D. C. (2018). Test-retest reliability of baropodometry in young asyntomatic individuals during semi static and dynamic analysis. Fisioterapia em Movimento, 31.

Baumfeld, D., Baumfeld, T., da Rocha, R. L., Macedo, B., Raduan, F., Zambelli, R., Alves Silva, T. A., & Nery, C. (2017). Reliability of baropodometry on the evaluation of plantar load distribution: A transversal study. BioMed research international, 2017.

Baumfeld, T., Baumfeld, D., Prats Dias, C. G., & Nery, C. (2018). Advances of Baropodometry in Human Health. Ann Musc Disord, 2(2), 1011.

Beato, M., & Dello Iacono, A. (2020). Implementing Flywheel (Isoinertial) Exercise in Strength Training: Current Evidence, Practical Recommendations, and Future Directions. Frontiers in Physiology, 11, 569.

Beato, M., Madruga-Parera, M., Piqueras-Sanchiz, F., Moreno-Pérez, V., & Romero-Rodriguez, D. (2019). Acute Effect of Eccentric Overload Exercises on Change of Direction Performance and Lower-Limb Muscle Contractile Function. Journal of Strength and Conditioning Research.

Beatty, N. R., Félix, I., Hettler, J., Moley, P. J., & Wyss, J. F. (2017). Rehabilitation and prevention of proximal hamstring tendinopathy. Current Sports Medicine Reports, 16(3), 162–171.

Bellizzi, M., Rizzo, G., Bellizzi, G., Ranieri, M., Fanelli, M., Megna, G., & Procoli, U. (2011). Electronic baropodometry in patients affected by ocular torticollis. Strabismus, 19(1), 21-25. https://doi.org/10.3109/09273972.2010.545469

Boppart, M. D., & Mahmassani, Z. S. (2019). Integrin signaling: Linking mechanical stimulation to skeletal muscle hypertrophy. American Journal of Physiology-Cell Physiology, 317(4), C629-C641. https://doi.org/10.1152/ajpcell.00009.2019

Cabrera, G., Zanazzi, J. F., Zanazzi, J. L., & Boaglio, L. (2017). Comparación de potencias en pruebas estadísticas de normalidad, con datos escasos. Revista de la Facultad de Ciencias Exactas, Físicas y Naturales, 4(2), 47.

Cardoso, P. P. (2019). Avaliação da distribuição de pressão plantar e da estabilidade postural em mulheres jovens saudáveis e sua associação com parâmetros antropométricos.

Carter, A. V., Schnepel, K. T., & Steigerwald, D. G. (2017). Asymptotic behavior of at-test robust to cluster heterogeneity. Review of Economics and Statistics, 99(4), 698–709.

Costa, R. M., da Silva, J. L. V., Marconato, G., de Morais, S. C. D., & Rocha, M. T. B. (2019). Static electronic baropodometry in patients with metatarsalgia. Scientific Journal of the Foot & Ankle, 13(2).

de Vitoria, F. (2018). 4.3 Comunicaciones Orales/Oral Presentations. XI Simposio Internacional de Actualizaciones en Entrenamiento de la Fuerza - XI International Symposium in Strength Training, 52.

Dominguez-Lara, S. (2018). Magnitud del efecto para pruebas de normalidad en investigación en salud. Investigación en educación médica, 7(27), 92–93.

Douglas, J., Pearson, S., Ross, A., & McGuigan, M. (2017). Eccentric exercise: Physiological characteristics and acute responses. Sports Medicine, 47(4), 663–675.

Fornari, M. C. S. (2018). Biomechanics of Postural Control in Young Adult and Elderly [PhD Thesis]. Universidade do Porto.

Gómez Echeverry, L. L., Velásquez Restrepo, S. M., Castaño Rivera, P., Valderrama Mejía, S., & Ruiz Molina, M. A. (2018). La antropometría y la baropodometría como técnicas de caracterización del pie y herramientas que proporcionan criterios de ergonomía y confort en el diseño y fabricación de calzado: Una revisión sistemática. Prospectiva, 16(1), 7–17.

Hedayatpour, N., & Falla, D. (2015). Physiological and neural adaptations to eccentric exercise: Mechanisms and considerations for training. BioMed research international, 2015.

Hurtado, M. J. R., & Silvente, V. B. (2012). Cómo aplicar las pruebas paramétricas bivariadas t de Student y ANOVA en SPSS. Caso práctico. Reire, 5(2), 83–100.

Jalal, S., Page, P. A., & George, D. (2016). Clinical Biomechanics Muscle activation comparisons between elastic and isoinertial resistance: A meta-analysis. JCLB, 39, 52-61. https://doi.org/10.1016/j.clinbiomech.2016.09.008

Jiarpakdee, J., Tantithamthavorn, C., & Hassan, A. E. (2019). The impact of correlated metrics on the interpretation of defect models. IEEE Transactions on Software Engineering.

Lima, F. F., Camillo, C. A., Gobbo, L. A., Trevisan, I. B., Nascimento, W. B., Silva, B. S., Lima, M. C., Ramos, D., & Ramos, E. M. (2018). Resistance training using low cost elastic tubing is equally effective to conventional weight machines in middle-aged to older healthy adults: A quasi-randomized controlled clinical trial. Journal of sports science & medicine, 17(1), 153.

Machado, Á. S., Bombach, G. D., Duysens, J., & Carpes, F. P. (2016). Differences in foot sensitivity and plantar pressure between young adults and elderly. Archives of Gerontology and Geriatrics, 63, 67-71. https://doi.org/10.1016/j.archger.2015.11.005

Mann, R., Malisoux, L., Urhausen, A., Meijer, K., & Theisen, D. (2016). Plantar pressure measurements and running-related injury: A systematic review of methods and possible associations. Gait and Posture, 47, 1-9. https://doi.org/10.1016/j.gaitpost.2016.03.016

Mazzocchi, M., Dessy, L. A., Di Ronza, S., Iodice, P., Saggini, R., & Scuderi, N. (2014). A study of postural changes after abdominal rectus plication abdominoplasty. Hernia, 18(4), 473-480. https://doi.org/10.1007/s10029-012-1015-1

Naughton, M., Miller, J., & Slater, G. J. (2018). Impact-induced muscle damage and contact sports: Etiology, effects on neuromuscular function and recovery, and the modulating effects of adaptation and recovery strategies. International Journal of Sports Physiology and Performance, 13(8), 962–969.

Nirenberg, M., Vernon, W., & Birch, I. (2018). A review of the historical use and criticisms of gait analysis evidence. Science & Justice, 58(4), 292–298.

Pacheco, J. L. R., Argüello, M. V. B., & Suárez, A. I. D. L. H. (2020). Análisis general del spss y su utilidad en la estadística. E-IDEA Journal of Business Sciences, 2(4), 17–25.

Peña, J. R., & Perdomo, L. R. (2018). Determinación de la fuerza abdominolumbar y las alteraciones de la postura en sujetos adultos. Expomotricidad.

Rey, E. A., Pico, J. S., & Luengas, L. A. (2018). Plataforma baropodométrica PIPLAB. Revista vínculos, 15(2), 139–149.

Rodríguez, M. J. P., Santisteban, M. E. R., & Martínez, F. A. (2020). Efectos de un programa de entrenamiento concurrente sobre el perfil antropométrico y la fuerza muscular en un grupo de jóvenes universitarios. Revista digital: Actividad Física y Deporte, 6(1), 14–31.

Schoenfeld, B. J. (2010). The mechanisms of muscle hypertrophy and their application to resistance training. The Journal of Strength & Conditioning Research, 24(10), 2857–2872.

Simmons, S. J. (2016). Differences in Skeletal Muscle Growth by Concentric, Eccentric, and Isometric Contractions [PhD Thesis]. Kalamazoo, Mich.: Kalamazoo College.

Sinha, U., Malis, V., Csapo, R., Narici, M., & Sinha, S. (2020). Magnetic resonance imaging based muscle strain rate mapping during eccentric contraction to study effects of unloading induced by unilateral limb suspension. European Journal of Translational Myology, 30(1), 139–143.

Sonkodi, B., Berkes, I., & Koltai, E. (2020). Have We Looked in the Wrong Direction for More Than 100 Years? Delayed Onset Muscle Soreness Is, in Fact, Neural Microdamage Rather Than Muscle Damage. Antioxidants, 9(3), 212.

Stewart, R. J., & Reider, B. (2016). The Ethics of Sports Medicine Research. Clinics in sports medicine, 35(2), 303–314.

Tesch, P. A., Fernandez-Gonzalo, R., & Lundberg, T. R. (2017). Clinical applications of iso-inertial, eccentric-overload (YoYoTM) resistance exercise. Frontiers in physiology, 8, 241.

Walker, S., Blazevich, A. J., Haff, G. G., Tufano, J. J., Newton, R. U., & Häkkinen, K. (2016). Greater strength gains after training with accentuated eccentric than traditional isoinertial loads in already strength-trained men. Frontiers in physiology, 7, 149.

Zamparo, P., Bolomini, F., Nardello, F., & Beato, M. (2015). Energetics (and kinematics) of short shuttle runs. European journal of applied physiology, 115(9), 1985–1994.

Published
10-08-2021
How to Cite
Rodriguez Perdomo, L., Rincón Yepes, C. A. ., & Vargas Santiago, M. E. (2021). Alterations in plantar pressure after a protocol of neuromuscular fatigue in isoinertial machine. SPORT TK-EuroAmerican Journal of Sport Sciences, 10(2), 61–75. https://doi.org/10.6018/sportk.432111
Issue
Section
Articles