Efecto de diferentes intervalos de tiempo de la aplicación de la terapia con diodos emisores de luz sobre la fatiga muscular
Resumen
Este estudio tuvo como objetivo identificar el momento idóneo de aplicación del diodo emisor de luz (LED) del infrarrojo cercano (NIR) en la potencia máxima isocinética de los flexores del codo. Este fue un estudio cruzado prospectivo, aleatorizado, simple-ciego, con pre–test y post-test, y controlado con placebo. Se asignaron al azar cuarenta y cinco no deportistas sanos a 3 grupos por igual: grupos de 5 minutos, 1 hora y 5 horas. Cada grupo (n = 15) tuvo en la primera sesión NIR-LED de 890 nm de longitud de onda, en condiciones activas o placebo, antes del ejercicio que provoca fatiga (5 minutos, 1 hora o 5 horas). Después de un intervalo de 7 días, se aplicó la segunda condición NIR-LED en la segunda sesión. La evaluación de la potencia máxima isocinética se realizó antes y después del ejercicio en cada sesión utilizando un dinamómetro isocinético. No hubo diferencias significativas entre los grupos y entre las condiciones en la potencia máxima isocinética (p > 0.05). La potencia máxima isocinética disminuyó significativamente después del tratamiento en comparación con el pretratamiento (p < 0.01) en todos los grupos, pero el grupo de 5 minutos mostró el menor porcentaje de disminución. En conclusión, lo más probable es que NIR-LED pueda resistir la fatiga muscular con los parámetros utilizados en este estudio si se emplea 5 minutos antes del ejercicio.
Descargas
Citas
Abreu, J. S. D. S., Dos Santos, G.V., Fonsati, L., Marques, N. R., & Ferraresi, C. (2020). Time–Response of Photobiomodulation Therapy by Light-Emitting Diodes on Muscle Torque and Fatigue Resistance in Young Men: Randomized, Double-Blind, Crossover and Placebo-Controlled Study. Photobiomodulation, Photomedicine, and Laser Surgery, 38(12), 750-757. https://doi.org/10.1089/photob.2020.4813
Albuquerque-Pontes, G. M., de Paula Vieira, R., Tomazoni, S. S., Caires, C. O., Nemeth, V., Vanin, A. A., ... & Leal-Junior, E. C. P. (2015). Effect of pre-irradiation with different doses, wavelengths, and application intervals of low-level laser therapy on cytochrome c oxidase activity in intact skeletal muscle of rats. Lasers in medical science, 30(1), 59-66. https://doi.org/10.1007/s10103-014-1616-2
Amaral, G. M., Marinho, H. V., Ocarino, J. M., Silva, P. L., Souza, T. R., & Fonseca, S. T. (2014). Muscular performance characterization in athletes: a new perspective on isokinetic variables. Brazilian journal of physical therapy, 18(6), 521-529. https://doi.org/10.1590/bjpt-rbf.2014.0047
Armstrong, T. J., Buckle, P., Fine, L. J., Hagberg, M., Jonsson, B., Kilbom, A., ... & Viikari-Juntura, E. R. (1993). A conceptual model for work-related neck and upper-limb musculoskeletal disorders. Scandinavian journal of work, environment & health, 73-84
Ballantyne, B. T., & Shields, R.K. (2010). Quadriceps fatigue alters human muscle performance during a novel weight bearing task. Medicine and science in sports and exercise, 42(9), 1712.
Baroni, B. M., Junior, E. C. P. L., De Marchi, T., Lopes, A. L., Salvador, M., & Vaz, M. A. (2010). Low level laser therapy before eccentric exercise reduces muscle damage markers in humans. European journal of applied physiology, 110(4), 789-796. https://doi.org/10.1007/s00421-010-1562-z
Baroni, B. M., Leal Junior, E. C. P., Geremia, J. M., Diefenthaeler, F., & Vaz, M. A. (2010). Effect of light-emitting diodes therapy (LEDT) on knee extensor muscle fatigue. Photomedicine and laser surgery, 28(5), 653-658.
Beltrame, T., Ferraresi, C., Parizotto, N. A., Bagnato, V. S., & Hughson, R. L. (2018). Light-emitting diode therapy (photobiomodulation) effects on oxygen uptake and cardiac output dynamics during moderate exercise transitions: a randomized, crossover, double-blind, and placebo-controlled study. Lasers in Medical Science, 33(5), 1065-1071. https://doi.org/10.1007/s10103-018-2473-1
Bjordal, J. M., Lopes-Martins, R. A. B., Joensen, J., & Iversen, V. V. (2010). The anti-inflammatory mechanism of low level laser therapy and its relevance for clinical use in physiotherapy. Physical Therapy Reviews,15(4), 286-293.
Borsa, P., & Sauers, E. (2000). The importance of gender on myokinetic deficits before and after microinjury. Medicine & Science in Sports & Exercise,32(5), 891-896.
Borsa, P. A., Larkin, K. A., & True, J. M. (2013). Does phototherapy enhance skeletal muscle contractile function and postexercise recovery? A systematic review. Journal of Athletic Training, 48(1), 57-67.
Calleja-González, J., Terrados, N., Mielgo-Ayuso, J., Delextrat, A., Jukic, I., Vaquera, A., ... & Ostojic, S. M. (2016). Evidence-based post-exercise recovery strategies in basketball. The Physician and sportsmedicine, 44(1), 74-78.
Chaffin, D. B., Andersson, G. B., & Martin, B. J. (2006). Occupational biomechanics. John wiley & sons.
De Almeida, P., Lopes-Martins, R. Á. B., De Marchi, T., Tomazoni, S. S., Albertini, R., Corrêa, J. C. F., ... & Junior, E. C. P. L. (2012). Red (660 nm) and infrared (830 nm) low-level laser therapy in skeletal muscle fatigue in humans: what is better? Lasers in medical science, 27(2), 453-458. https://doi.org/10.1007/s10103-011-0957-3
De Brito Vieira, W. H., Ferraresi, C., de Andrade Perez, S. E., Baldissera, V., & Parizotto, N. A. (2012). Effects of low-level laser therapy (808 nm) on isokinetic muscle performance of young women submitted to endurance training: a randomized controlled clinical trial. Lasers in medical science, 27(2), 497-504. https://doi.org/10.1007/s10103-011-0984-0
De Marchi, T., Junior, E. C. P. L., Bortoli, C., Tomazoni, S. S., Lopes-Martins, R. Á. B., & Salvador, M. (2012). Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress. Lasers in medical science, 27(1), 231-236.
Enoka R. M, & Duchateau, J. (2008). Muscle fatigue: what, why and how it influences muscle function. The Journal of physiology, 586(1), 11-23.
Enwemeka, C. S., Parker, J. C., Dowdy, D. S., Harkness, E. E., Harkness, L. E., & Woodruff, L. D. (2004). The efficacy of low-power lasers in tissue repair and pain control: a meta-analysis study. Photomedicine and Laser Therapy, 22(4), 323-329.
Enwemeka, C. S. (2000). Attenuation and penetration of visible 632.8 nm and invisible infra-red 904nm light in soft tissues. Laser Therapy, 13(1), 95-101. https://doi.org/10.5978/islsm.13.95
Enwemeka, C. S. (2009). Intricacies of dose in laser phototherapy for tissue repair and pain relief. Photomedicine and Laser Surgery, 27(3), 387-393. https://doi.org/10.1089/pho.2009.2503
Ferraresi, C., de Brito Oliveira, T., de Oliveira Zafalon, L., de Menezes Reiff, R. B., Baldissera, V., de Andrade Perez, S. E., ... & Parizotto, N. A. (2011). Effects of low level laser therapy (808 nm) on physical strength training in humans. Lasers in Medical Science, 26(3), 349-358. https://doi.org/10.1007/s10103-010-0855-0
Ferraresi, C., de Sousa, M. V. P., Huang, Y. Y., Bagnato, V. S., Parizotto, N. A., & Hamblin, M. R. (2015). Time response of increases in ATP and muscle resistance to fatigue after low-level laser (light) therapy (LLLT) in mice. Lasers in medical science, 30(4), 1259-1267. https://doi.org/10.1007/s10103-015-1723-8
Ferraresi, C., Dos Santos, R. V., Marques, G., Zangrande, M., Leonaldo, R., Hamblin, M. R., ... & Parizotto, N. A. (2015). Light-emitting diode therapy (LEDT) before matches prevents increase in creatine kinase with a light dose response in volleyball players. Lasers in medical science, 30(4), 1281-1287. https://doi.org/10.1007/s10103-015-1728-3
Ferraresi, C., Kaippert, B., Avci, P., Huang, Y. Y., de Sousa, M. V., Bagnato, V. S., ... & Hamblin, M. R. (2015). Low‐level Laser (Light) Therapy Increases Mitochondrial Membrane Potential and ATP Synthesis in C2C12 Myotubes with a Peak Response at 3–6 h. Photochemistry and photobiology, 91(2), 411-416. https://doi.org/10.1111/php.12397
Ferraresi, C., Parizotto, N. A., Pires de Sousa, M. V., Kaippert, B., Huang, Y. Y., Koiso, T., ... & Hamblin, M. R. (2015). Light‐emitting diode therapy in exercise‐trained mice increases muscle performance, cytochrome c oxidase activity, ATP and cell proliferation. Journal of biophotonics, 8(9), 740-754. https://doi.org/10.1002/jbio.201400087
Fulop, A. M., Dhimmer, S., Deluca, J. R., Johanson, D. D., Lenz, R. V., Patel, K. B., ... & Enwemeka, C. S. (2010). A meta-analysis of the efficacy of laser phototherapy on pain relief. The Clinical journal of pain, 26(8), 729-736.
Grassi, B., Rossiter, H. B., Zoladz, J. A. (2015). Skeletal muscle fatigue and decreased efficiency: two sides of the same coin? Exercise and sport sciences reviews, 43(2), 75-83. https://doi.org/10.1249/JES.0000000000000043
Green, H. (1995). Metabolic determinants of activity induced muscular fatigue. Exercise metabolism, 211-256.
Green S., Langberg, H., Skovgaard, D., Bülow, J., & Kjær, M. (2000). Interstitial and arterial‐venous [K+] in human calf muscle during dynamic exercise: effect of ischaemia and relation to muscle pain. The Journal of physiology, 529(3), 849-861.
Higashi, R. H., Toma, R. L., Tucci, H. T., Pedroni, C. R., Ferreira, P. D., Baldini, G. S., ... & Renno, A. C. M. (2013). Effects of low-level laser therapy on biceps braquialis muscle fatigue in young women. Photomedicine and laser surgery, 31(12), 586-594.
Junior, E. C. P. L., Lopes-Martins, R. Á. B., Baroni, B. M., De Marchi, T., Taufer, D., Manfro, D. S., ... & Bjordal, J. M. (2009). Effect of 830 nm low-level laser therapy applied before high-intensity exercises on skeletal muscle recovery in athletes. Lasers in medical science, 24(6), 857.
Kannus, P. (1994). Isokinetic evaluation of muscular performance. International journal of sports medicine,15(S 1), S8-S11.
Karu, T. (1999). Primary and secondary mechanisms of action of visible to near-IR radiation on cells. Journal of Photochemistry and photobiology B: Biology,49(1), 1-17. https://doi.org/10.1016/S1011-1344(98)00219-X
LaBella, C. R., Huxford, M. R., Grissom, J., Kim, K. Y., Peng, J., & Christoffel, K. K. (2011). Effect of neuromuscular warm-up on injuries in female soccer and basketball athletes in urban public high schools: cluster randomized controlled trial. Archives of pediatrics & adolescent medicine,165(11), 1033-1040.
Lanferdini, F. J., Bini, R. R., Baroni, B. M., Klein, K. D., Carpes, F. P., & Vaz, M. A. (2018). Improvement of performance and reduction of fatigue with low-level laser therapy in competitive cyclists. International Journal of Sports Physiology and Performance, 13(1), 14-22.
Larkin, K. A., Martin, J. S., Zeanah, E. H., True, J. M., Braith, R. W., & Borsa, P. A. (2012). Limb blood flow after class 4 laser therapy. Journal of athletic training, 47(2), 178-183.
Larkin-Kaiser, K. A., Christou, E., Tillman, M., George, S., & Borsa, P. A. (2015). Near-infrared light therapy to attenuate strength loss after strenuous resistance exercise. Journal of athletic training, 50(1), 45-50. https://doi.org/10.4085/1062-6050-49.3.82
Leal, E. C. P., Lopes-Martins, R. Á. B., Frigo, L., De Marchi, T., Rossi, R. P., De Godoi, V., ... & Bjordal, J. M. (2010). Effects of low-level laser therapy (LLLT) in the development of exercise-induced skeletal muscle fatigue and changes in biochemical markers related to postexercise recovery. Journal of orthopaedic & sports physical therapy, 40(8), 524-532. https://doi.org/10.2519/jospt.2010.3294
Leal Junior, E. C. P., Lopes-Martins, R. A. B., Dalan, F., Ferrari, M., Sbabo, F. M., Generosi, R. A., ... & Bjordal, J. M. (2008). Effect of 655-nm low-level laser therapy on exercise-induced skeletal muscle fatigue in humans. Photomedicine and laser surgery, 26(5), 419-424. https://doi.org/10.1089/pho.2007.2160
Junior, E. C. P. L., Lopes-Martins, R. Á. B., Vanin, A. A., Baroni, B. M., Grosselli, D., De Marchi, T., ... & Bjordal, J. M. (2009). Effect of 830 nm low-level laser therapy in exercise-induced skeletal muscle fatigue in humans. Lasers in Medical Science, 24(3), 425-431. https://doi.org/10.1007/s10103-008-0592-9
Leal-Junior, E. C. P., Lopes-Martins, R. Á. B., & Bjordal, J. M. (2019). Clinical and scientific recommendations for the use of photobiomodulation therapy in exercise performance enhancement and post-exercise recovery: current evidence and future directions. Brazilian journal of physical therapy, 23(1), 71-75. https://doi.org/10.1016/j.bjpt.2018.12.002
Maegawa, Y., Itoh, T., Hosokawa, T., Yaegashi, K., & Nishi, M. (2000). Effects of near‐infrared low‐level laser irradiation on microcirculation. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery, 27(5), 427-437.
Manteifel, V., Bakeeva, L., & Karu, T. (1997). Ultrastructural changes in chondriome of human lymphocytes after irradiation with He-Ne laser: Appearance of giant mitochondria. Journal of Photochemistry and Photobiology B: Biology, 38(1), 25-30. https://doi.org/10.1016/S1011-1344(96)07426-X
Mehta, R. K., & Cavuoto, L. A. (2017). Relationship between BMI and fatigability is task dependent. Human factors,59(5), 722-733. https://doi.org/10.1177/0018720817695194
Miller, L. E., Pierson, L. M., Nickols-Richardson, S. M., Wootten, D. F., Selmon, S. E., Ramp, W. K., & Herbert, W. G. (2006). Knee extensor and flexor torque development with concentric and eccentric isokinetic training. Research quarterly for exercise and sport, 77(1), 58-63.
Miranda, E. F., Vanin, A. A., Tomazoni, S. S., Grandinetti, V. D. S., de Paiva, P. R. V., Machado, C. D. S. M., ... & Leal-Junior, E. C. P. (2016). Using pre-exercise photobiomodulation therapy combining super-pulsed lasers and light-emitting diodes to improve performance in progressive cardiopulmonary exercise tests. Journal of Athletic Training, 51(2), 129-135.
Passarella, S., Casamassima, E., Molinari, S., Pastore, D., Quagliariello, E., Catalano, I. M., & Cingolani, A. (1984). Increase of proton electrochemical potential and ATP synthesis in rat liver mitochondria irradiated in vitro by helium‐neon laser. FEBS letters,175(1), 95-99. https://doi.org/10.1016/0014-5793(84)80577-3
Passarella, S., Ostuni, A., Atlante, A., & Quagliariello, E. (1988). Increase in the ADP/ATP exchange in rat liver mitochondria irradiated in vitro by helium-neon laser. Biochemical and biophysical research communications,156(2), 978-986. https://doi.org/10.1016/s0006-291x(88)80940-9
Pinheiro, A. L. (2009). Advances and perspectives on tissue repair and healing. Mary Ann Liebert: NY, USA.
Reddy, G. K. (2004). Photobiological basis and clinical role of low-intensity lasers in biology and medicine. Journal of clinical laser medicine & surgery, 22(2), 141-150.
Rossato, M., Dellagrana, R. A., Lanferdini, F. J., Sakugawa, R. L., Lazzari, C. D., Baroni, B. M., & Diefenthaeler, F. (2016). Effect of pre-exercise phototherapy applied with different cluster probe sizes on elbow flexor muscle fatigue. Lasers in medical science,31(6), 1237-1244. https://doi.org/10.1007/s10103-016-1973-0
Rossato, M., Dellagrana, R. A., Sakugawa, R. L., Lazzari, C. D., Baroni, B. M., & Diefenthaeler, F. (2018). Time response of photobiomodulation therapy on muscular fatigue in humans. The Journal of Strength & Conditioning Research, 32(11), 3285-3293. https://doi.org/10.1519/JSC.0000000000002339
Samoilova, K. A., Zhevago, N. A., Menshutina, M. A., & Grigorieva, N. B. (2008). Role of nitric oxide in the visible light-induced rapid increase of human skin microcirculation at the local and systemic level: I. diabetic patients. Photomedicine and Laser Surgery, 26(5), 433-442.
Silveira, P. C., da Silva, L. A., Fraga, D. B., Freitas, T. P., Streck, E. L., & Pinho, R. (2009). Evaluation of mitochondrial respiratory chain activity in muscle healing by low-level laser therapy. Journal of Photochemistry and Photobiology B: Biology, 95(2), 89-92. https://doi.org/10.1016/j.jphotobiol.2009.01.004
Weerapong, P., Hume, P. A., & Kolt, G. S. (2005). The mechanisms of massage and effects on performance, muscle recovery and injury prevention. Sports medicine, 35(3), 235-256.
Las obras que se publican en esta revista están sujetas a los siguientes términos:
1. El Servicio de Publicaciones de la Universidad de Murcia (la editorial) conserva los derechos patrimoniales (copyright) de las obras publicadas, y favorece y permite la reutilización de las mismas bajo la licencia de uso indicada en el punto 2.
© Servicio de Publicaciones, Universidad de Murcia, 2013
2. Las obras se publican en la edición electrónica de la revista bajo una licencia Creative Commons Reconocimiento-NoComercial-SinObraDerivada 3.0 España (texto legal). Se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que: i) se cite la autoría y la fuente original de su publicación (revista, editorial y URL de la obra); ii) no se usen para fines comerciales; iii) se mencione la existencia y especificaciones de esta licencia de uso.
3. Condiciones de auto-archivo. Se permite y se anima a los autores a difundir electrónicamente las versiones pre-print (versión antes de ser evaluada) y/o post-print (versión evaluada y aceptada para su publicación) de sus obras antes de su publicación, ya que favorece su circulación y difusión más temprana y con ello un posible aumento en su citación y alcance entre la comunidad académica.