Una red de contabilidad de la circularidad: Medición del CO2 a lo largo de las cadenas de suministro mediante aprendizaje automático

A circularity accounting network: CO2 measurement along supply chains using machine learning

Autores/as

DOI: https://doi.org/10.6018/rcsar.564901
Palabras clave: Redes contables, Contabilidad de la economía circular, Indicadores de CO2, Redes neuronales artificiales, Contabilidad de la sostenibilidad

Agencias de apoyo

  • University of Washington
  • Universidad de Córdoba
  • iDreamSky (xx.mesh); iMySky (d33p\\# classifier)
  • Spanish Ministry of Science and Innovation (PID2019-104163RA-I00)

Resumen

Este artículo propone utilizar un tipo de red de aprendizaje automático denominado redes neuronales artificiales para diseñar una red de contabilidad de la circularidad. La red está compuesta por actores humanos y no humanos y contabiliza el impacto de las emisiones y el secuestro de CO2 de los productos a lo largo de las cadenas de suministro mundiales.  La red sirve para conectar a personas y otros actores que comparten un indicador de CO2 y permite a los usuarios visualizar el nivel de (in)circularidad de diferentes productos a través de diagramas específicos calculados por un estimador de CO2 basado en conocimientos de la teoría de las redes de actores. A diferencia de la mayoría de los estudios anteriores sobre contabilidad de la economía circular que desarrollan algún tipo de marco o indicador que representa mediciones a nivel micro, meso o macro, la red de contabilidad de la circularidad no se limita a un nivel concreto de análisis, sino que está diseñada para establecer relaciones entre múltiples usuarios a diferentes niveles (por ejemplo, actores gubernamentales, corporativos o consumidores). El documento presenta el diseño conceptual y una prueba preliminar de la red utilizando datos reales, lo que contribuye a avanzar en el potencial poco explorado de la inteligencia artificial en el ámbito de la contabilidad de la economía circular. La principal aportación de esta red es que los datos proporcionados por el indicador: (i) se derivan de la propia red que aprende de fuentes abiertas; (ii) la red no es estática, sino que sigue fluyendo a medida que se construyen nuevas relaciones dentro de la red, avanzando hacia la autorregulación; (iii) contempla tanto las emisiones como los secuestros a lo largo de las cadenas de suministro.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aranda-Usón, A., M. Moneva, J., Portillo-Tarragona, P., & Llena-Macarulla, F. (2018). Measurement of the circular economy in businesses: Impact and implications for regional policies. Economics and Policy of Energy and the Environment, 2(1),187–205. https://doi.org/10.3280/EFE2018-002010

Aranda-Usón, A., Portillo-Tarragona, P., Marín-Vinuesa, L.M., & Scarpellini, S. (2019). Financial Resources for the Circular Economy: A Perspective from Businesses. Sustainability, 11(3), 1–23. https://doi.org/10.3390/su11030888

Aranda-Usón, A., Portillo-Tarragona, P., Scarpellini, S.. & Llena-Macarulla, F. (2020). The progressive adoption of a circular economy by businesses for cleaner production: An approach from a regional study in Spain. Journal of Cleaner Production, 247, 119648. https://doi.org/10.1016/j.jclepro.2019.119648

Aranda-Usón, A., Moneva, J.M., Scarpellini, S. (2022). ‘Circular sustainability accounting’ in businesses for a circular economy: a framework of analysis. European Journal of Social Impact and Circular Economy. https://doi.org/10.13135/2704-9906/6817

Ashmore, M., Wooffitt, R. and Harding, S. (1994). Humans and others, agents and things Humans and Others: The Concept of Agency and its Attribution [special issue] American Behavioural Scientist, 37(6), pp. 733–741.

Bakan, J. (2004). The Corporation: The Pathological Pursuit of Profit and Power. London, UK: Ed. Constable.

Barter, N., & Bebbington, J. (2013). Actor-network theory: a briefing note and possibilities for social and environmental accounting research. Social and Environmental Accountability Journal, 33(1), 33-50. https://doi.org/10.1080/0969160X.2012.743264

Bebbington, J., Österblom, H., Crona, B., Jouffray, J.-B., Larrinaga, C., Russell, S., & Scholtens, B. (2019). Accounting and accountability in the Anthropocene. Accounting, Auditing and Accountability Journal, 33(1), 152-177. https://doi.org/10.1108/AAAJ-11-2018-3745

Bengio, S., Vinyals, O., Jaitly, N., & Shazeer, N. (2015). Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks. Advances in Neural Information Processing Systems. 28(1), 1171-1179. https://proceedings.neurips.cc/paper/2015/file/e995f98d56967d946471af29d7bf99f1-Paper.pdf

Bentué, D. B., Fondevila, M. M., & Scarpellini, S. (2022). Financial institutions facing the challenge of the European taxonomy of sustainable investments and the circular economy disclosure. UCJC Business & Society Review, 19(2), 120-161.

Berkes, F., & Ross, H. (2013). Community resilience: toward an integrated approach. Society & Natural Resources, 26(1), 5-20. https://doi.org/10.1080/08941920.2012.736605

Briers, M., & Chua, W. F. (2001). The role of actor-networks and boundary objects in management accounting change: a field study of an implementation of activity based costing, Accounting, Organisations and Society, 26(1), pp. 237–269. https://doi.org/10.1016/S0361-3682(00)00029-5

Britz, D., Goldie, A., Luong, M.-T., & Le, Q. (2017). Massive Exploration of Neural Machine Translation Architectures [Paper presentation]. EMNLP 2017 - Conference on Empirical Methods in Natural Language Processing, Proceedings, (pp. 1442–1451). https://arxiv.org/abs/1703.03906v2

Callon, M. (1986). Some elements in a sociology of translation: domestication of the scallops and fishermen of St Brieuc Bay. In J. Law (Ed.), Power, Action and Belief: A New Sociology of Knowledge?, pp. 196–233. London, UK: Routledge.

Castree, N. (2002). False antitheses? Marxism, nature and actor-networks, Antipode, 34(1), pp. 111–116.

CCaLC project (2021). Carbon Calculations over the Life Cycle of Industrial Activities. http://www.ccalc.org.uk/casestudies.php

CDP (Carbon Disclosure Project), 2011. Carbon disclosure project 2011 Deutschland/ Österreich 250. https://www.cdp.net/en/guidance/guidance-for-companies (accessed 03.07.23)

Chan, V., & Chan, C. (2017). Learning from a carbon dioxide capture system dataset: Application of the piecewise neural network algorithm. Petroleum, 3(1), 56-67. https://doi.org/10.1016/j.petlm.2016.11.004

Chen, M., Liu, Q., Huang, S., & Dang, C. (2020). Environmental cost control system of manufacturing enterprises using artificial intelligence based on value chain of circular economy. Enterprise Information Systems, 1-20. https://doi.org/10.1080/17517575.2020.1856422

Cheshmberah, F., Fathizad, H., Parad, G. A., & Shojaeifar, S. (2020). Comparison of RBF and MLP neural network performance and regression analysis to estimate carbon sequestration. International Journal of Environmental Science and Technology, 17(9), 3891-3900. https://doi.org/10.1007/s13762-020-02696-y

Costanza, R. (1980). Embodied energy and economic valuation. Science, 210(4475), 1219-1224.

de-Magistris, T., Gracia, A., & Barreiro-Hurle, J. (2017). Do consumers care about European food labels? An empirical evaluation using best-worst method. British Food Journal, 119(12), 2698-2711. https://doi.org/10.1108/BFJ-11-2016-0562

Dhamija, P., & Bag, S. (2020). Role of artificial intelligence in operations environment: a review and bibliometric analysis. The TQM Journal, 32(4), 869-896. https://doi.org/10.1108/TQM-10-2019- 0243

Ellen MacArthur Foundation (2015a). Towards a Circular Economy - Economic and Business Rationale for an Accelerated Transition. https://ellenmacarthurfoundation.org/towards-the-circular-economy-vol-1-an-economic-and-business-rationale-for-an

Ellen MacArthur Foundation (2015b). Delivering the Circular Economy: A Toolkit for Policymakers, Delivering the Circular Economy: A Toolkit for Policymakers. European Union. https://circulareconomy.europa.eu/platform/en/toolkits-guidelines/delivering-circular-economy-toolkit-policymakers

European Commission (2014). Towards a circular economy: a zero waste programme for Europe (bl 398). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions.

European Commission (2015). Closing the Loop - An EU Action Plan for the Circular Economy. Communication From the Commission to the European Parliament. The Council, the European Economic and Social Committee and the Committee of the Regions.

European Commission (2019). Communication from the Commission to the European Parliament, the European Council, the European Economic and Social Committee and the Committee of the regions. The European Green Deal. Brussels, 11.12.2019 COM (2019) 640 final.

European Commission (2020). The New Circular Economy Action Plan.

Fox, S. (2000). Communities of practice, Foucault and actor-network theory, Journal of Management Studies, 37(6), pp. 853–867.

Ghisellini, P., Cialani, C., & Ulgiati, S. (2016). A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. Journal of Cleaner Production, 114(1), 11–32. https://doi.org/10.1016/j.jclepro.2015.09.007

Gladwin, T. N., Kennelly, J. J., & Krause, T. S. (1995). Shifting paradigms for sustainable development: implications for management theory and research. Academy of Management Review, 20(4), pp. 874–907. https://doi.org/10.2307/258959

Gray, R. (1992). Accounting and environmentalism: An exploration of the challenge of gently accounting for accountability, transparency and sustainability. Accounting, Organizations and Society, 17(5), 399–425. https://doi.org/10.1016/0361-3682(92)90038-T

Gray, R., Bebbington, J., & Walters, D. (1993). Accounting for the Environment (London: Paul Chapman) Griffin, P., & Heede, C. R. (2017). The carbon majors database. CDP carbon majors report 2017, Carbon Disclosure Project (CDP) UK.

GRI (Global Reporting Initiative) (2011). 2011 G3.1. https://www.globalreporting.org/standards/ (accessed 03.07.23)

Grunert, K., Hieke, S., & Wills, J. (2014). Sustainability labels on food products: Consumer motivation, understanding and use. Food Policy, 44(1), 177-189. https://doi.org/10.1016/j.foodpol.2013.12.001

Heede, R. (2019). Carbon Majors: Accounting for carbon and methane emissions 1854-2010 Methods & Results Report. London, UK: LAP Lambert Academic Publishing.

Ibáñez-Forés, V., Martínez-Sánchez, V., Valls-Val, K., & Bovea, M. D. (2022). Sustainability reports as a tool for measuring and monitoring the transition towards the circular economy of organisations: Proposal of indicators and metrics. Journal of Environmental Management, 320. https://doi.org/10.1016/j.jenvman.2022.115784

Ivakhiv, A. (2002) Toward a multicultural ecology, Organization and Environment, 15(4), 389–409. http://www.jstor.org/stable/26161759

Jevons, W.S. (1865). The Coal Question (2nd ed.). New York, USA: Macmillan and Company.

Jin, L., Tan, F., & Jiang, S. (2020). Generative Adversarial Network Technologies and Applications in Computer Vision. Computational Intelligence and Neuroscience, 1-17. https://doi.org/10.1155/2020/1459107

Jin, H. (2021). Prediction of direct carbon emissions of Chinese provinces using artificial neural networks. PLOS One, 16(5), e0236685. https://doi.org/10.1371/journal.pone.0236685

Jose, R., Panigrahi, S. K., Patil, R. A., Fernando, Y., & Ramakrishna, S. (2020). Artificial Intelligence-Driven Circular Economy as a Key Enabler for Sustainable Energy Management. Materials Circular Economy, 2(1), 1-7. https://doi.org/10.1007/s42824-020-00009-9

Karnow, C. E.A. (1996). Liability for Distributed Artificial Intelligences. Berkeley Technology Law Journal, 11(1), 147. https://www.jstor.org/stable/24115584

Katz Gerro, T., & López Sintas, J. (2019). Mapping circular economy activities in the European Union: Patterns of implementation and their correlates in small and medium‐sized enterprises. Business Strategy and the Environment, 28(1), 485–496. https://doi.org/10.1002/bse.2259

Kirchherr, J., Reike, D., & Hekkert, M. (2017). Conceptualizing the circular economy: an analysis of 114 definitions. Resources, Conservation and Recycling, 127 (1), 221-232. https://doi.org/10.1016/j.resconrec.2017.09.005

Koperna, G., Jonsson, H., Ness, R., Cyphers, S., & MacGregor, J. (2020). A Workflow Incorporating an Artificial Neural Network to Predict Subsurface Porosity for CO2 Storage Geological Site Characterization. Processes, 8(7), 813. https://doi.org/10.3390/pr8070813

Korhonen, J., Honkasalo, A., & Seppälä, J. (2018). Circular economy: the concept and its

limitations. Ecological Economics, 143(1), 37–46.

https://doi.org/10.1016/j.ecolecon.2017.06.041

Lade, S. J., Steffen, W., de Vries, W., Carpenter, S. R., Donges, J. F., Gerten, D., ... & Rockström, J. (2020). Human impacts on planetary boundaries amplified by Earth system interactions. Nature Sustainability, 3(2), 119–128. https://doi.org/10.1038/s41893-019-0454-4.

Latour, B. (1993). We Have Never Been Modern, trans. Catherine. Cambridge, MA, USA: Harvard University Press.

Latour, B. (2005). Reassembling the Social: An Introduction to Actor-Network Theory. Oxford, UK: Oxford University Press.

Latour, B. (2010). On the Modern Cult of the Factish Gods. London, UK: Duke University Press.

Latour, B. (2017). Facing Gaia: Eight lectures on the new climatic regime. New York, USA: John Wiley & Sons.

Law, J. (1992). Notes on the Theory of the Actor Network: Ordering, Strategy and Heterogeneity (Centre for Science Studies, Lancaster University). Available at: http://www.comp.lancs.ac.uk/sociology/papers/Law-Notes-on-ANT.pdf (accessed 20 June 2008)

Law, J. (1999). After ANT: complexity, naming and topology. In J. Law and J. Hassard (Eds), Actor Network Theory and After, pp. 1–14. Oxford, UK: Blackwell.

Law, J. (2000). Objects, Spaces and Others (Centre for Science Studies, Lancaster University). Available at: http://www. comp.lancs.ac.uk/sociology/papers/Law-Objects-Spaces-Others.pdf (accessed 20 June 2008).

Lee, N., & Brown, S. (1994). Otherness and the actor network: the undiscovered continent, Humans and Others: The Concept of Agency and its Attribution [special issue]. American Behavioural Scientist, 37(6), pp. 772–791.

Lee, N., & Hassard, J. (1999). Organization unbound: actor network theory, research strategy and institutional flexibility, Organization, 6(3), pp. 391–404. https://doi.org/10.1177/135050849963002

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014). Microsoft COCO: Common Objects in Context. In D. Fleet, T. Pajdla, B. Schiele, & T. Tuytelaars (Eds.), Computer Vision – ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, vol 8693. Cham: Springer. https://doi.org/10.1007/978-3-319-10602-1_48.

Linder, M., Sarasini, S., & van Loon, P. (2017). A metric for quantifying product-level circularity. Journal of Industrial Ecology, 21, 545e558. https://doi.org/10.1111/jiec.12552

Liu, Q., Trevisan, A. H., Yang, M., & Mascarenhas, J. (2022). A framework of digital technologies for the circular economy: Digital functions and mechanisms. Business Strategy and the Environment, 31(5), 2171-2192. https://doi.org/10.1002/bse.3015

Llena-Macarulla, F., Moneva, J. M., Aranda-Usón, A., & Scarpellini, S. (2023). Reporting measurements or measuring for reporting? Internal measurement of the Circular Economy from an environmental accounting approach and its relationship. Revista de Contabilidad-Spanish Accounting Review, 26(2), 200-212. https://doi.org/10.6018/rcsar.467751

Lowe, A. (2001). After ANT: an illustrative discussion of the implications for qualitative accounting case research. Accounting, Auditing and Accountability, 14(3), pp. 327–351. https://doi.org/10.1108/EUM0000000005519

Lukka, K., & Vinnari, E. (2014). Domain theory and method theory in management accounting research. Accounting, Auditing & Accountability Journal, 27(8), 1308-1338. https://doi.org/10.1108/AAAJ-03-2013-1265

Marco-Fondevila, M., Llena-Macarulla, F., Callao-Gastón, S., & Jarne-Jarne, J.I. (2021). Are circular economy policies actually reaching organizations? Evidence from the largest Spanish companies. Journal of Cleaner Production, 285, 124858. https://doi.org/10.1016/j.jclepro.2020.124858

Moneva, J. M., Archel, P., & Correa, C. (2006). GRI and the camouflaging of corporate unsustainability. Accounting Forum, 30(2), 121–137. https://doi.org/10.1016/j.accfor.2006.02.001

Moneva, J. M., Scarpellini, S., Aranda‐Usón, A., & Alvarez Etxeberria, I. (2023). Sustainability reporting in view of the European sustainable finance taxonomy: Is the financial sector ready to disclose circular economy?. Corporate Social Responsibility and Environmental Management, 30(3), 1336-1347. https://doi.org/10.1002/csr.2423

Murray, A., Skene, K., & Haynes, K. (2017). The circular economy: an interdisciplinary exploration of the concept and application in a global context. Journal of Business Ethics, 140(3), 369– 380. https://doi.org/10.1007/s10551-015-2693-2

Nikseresht, A., Hajipour, B., Pishva, N., & Mohammadi, H. A. (2022). Using artificial intelligence to make sustainable development decisions considering VUCA: a systematic literature review and bibliometric analysis. Environmental Science and Pollution Research, 1-30. https://doi.org/10.1007/s11356-022-19863-y

O’Connell, D., Ciccotosto, S. K., & De Lange, P. A. (2009). Latour’s contribution to the accounting literature through actor-network theory: a critical appraisal, paper presented at Interdisciplinary Perspectives on Accounting Conference.

Ogunmakinde, O. E. (2019). A review of circular economy development models in China, Germany and Japan. Recycling, 4(3), 27. https://doi.org/10.3390/recycling4030027

Pauliuk, S. (2018). Critical appraisal of the circular economy standard bs 8001:2017 and a dashboard of quantitative system indicators for its implementation in organisations. Resources Conservation and Recycling, 129(1), 81– 92. https://doi.org/10.1016/j.resconrec.2017.10.019

Rahimi, M., Moosavi, S. M., Smit, B., & Hatton, T. A. (2021). Toward smart carbon capture with machine learning. Cell Reports Physical Science. 2, 100396. https://doi.org/10.1016/j.xcrp.2021.100396

Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F. S., Lambin, E., Lenton, T.M., Scheffer, M., Folke, C., Schellnhuber, H. J., Nykvist, B., de Wit, C. A., Hughes, T., van der Leeuw, S., Rodhe, H., Sörlin, S., Snyder, P. K., Costanza, R., Svedin, U.,… & Foley, J. (2009). A safe operating space for humanity. Nature, 461(7263), 472-475. https://doi.org/10.1038/461472a

Rodrigue, M., & Romi, A. M. (2022). Environmental escalations to social inequities: Some reflections on the tumultuous state of Gaia. Critical Perspectives on Accounting, 82, 102321. https://doi.org/10.1016/j.cpa.2021.102321

Rossi, E., Bertassini, A.C., Ferreira, C. dos S., Neves do Amaral, W.A., & Ometto, A.R. (2020). Circular economy indicators for organizations considering sustainability and business models: Plastic, textile and electro-electronic cases. Journal of Cleaner Production, 247(1). https://doi.org/10.1016/j.jclepro.2019.119137

Sassanelli, C., Rosa, P., Rocca, R., & Terzi, S. (2019). Circular economy performance assessment methods: A systematic literature review. Journal of Cleaner Production, 229(1), 440-453. https://doi.org/10.1016/j.jclepro.2019.05.019

Scarpellini, S., Marín-Vinuesa, L. M., Aranda-Usón, A., & Portillo-Tarragona, P. (2020). Dynamic capabilities and environmental accounting for the circular economy in businesses. Sustainability Accounting, Management and Policy Journal, 11(7), 1129-1158. https://doi.org/10.1108/SAMPJ-04-2019-0150

Scarpellini, S. (2022). Social impacts of a circular business model: An approach from a sustainability accounting and reporting perspective. Corporate Social Responsibility and Environmental Management, 29(3), 646-656. https://doi.org/10.1002/csr.2226

Schaltegger, S., & Csutora, M. (2012). Carbon accounting for sustainability and

management. Status quo and challenges. Journal of Cleaner Production, 36(1), 1–16.

https://doi.org/10.1016/j.jclepro.2012.06.024

Schröder, P., Bengtsson, M., Cohen, M., Dewick, P., Hofstetter, J., & Sarkis, J. (2019). Degrowth within –aligning circular economy and strong sustainability narratives. Resources Conservation and Recycling, 146(1), 190–191. https://doi.org/10.1016/j.resconrec.2019.03.038

Schulze, G. (2016). Growth Within: A Circular Economy Vision for a Competitive Europe. Ellen MacArthur Foundation, Deutsche Post Foundation and McKinsey Center for Business and Environment. https://unfccc.int/sites/default/files/resource/Circular%20economy%203.pdf

Sezer, O. B., Ozbayoglu, M., & Dogdu, E. (2017). A deep neural-network based stock trading system based on evolutionary optimized technical analysis parameters. Procedia computer science, 114(1), 473-480. https://doi.org/10.1016/j.procs.2017.09.031

Sipöcz, N., Tobiesen, F. A., & Assadi, M. (2011). The use of Artificial Neural Network models for CO2 capture plants. Applied Energy, 88(7), 2368-2376. https://doi.org/10.1016/j.apenergy.2011.01.013

SmartLabel. (2021, October 9). Kellogg's® Frosted Flakes® cereal. Retrieved October 18, 2021, from https://smartlabel.kelloggs.com/Product/Index/00038000199042

Song, Y., Wonmo S., Youngho J., & Woodong J. (2020). Application of an Artificial Neural Network in Predicting the Effectiveness of Trapping Mechanisms on CO2 Sequestration in Saline Aquifers. International Journal of Greenhouse Gas Control, 98, 103042. https://doi.org/10.1016/j.ijggc.2020.103042

Sutskever, I., Vinyals, O., & Quoc, V. L. (2014). Sequence to Sequence Learning with Neural Networks. In NIPS'14: Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2 December 2014 (pp. 3104–3112).

Swensson, N., & Funck, E.K. (2019). Management control in a circular economy. Exploring and theorizing the adaptation of management control to circular business models. Journal of Cleaner Production, 233(1), 390–398. https://doi.org/10.1016/j.jclepro.2019.06.089

Szilárd, L. (1929). Über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen. Zeitschrift für Physik, 53(11), 840-856.

Thanh, H. V., Sugai, Y., & Sasaki, K. (2020). Application of artificial neural network for predicting the performance of CO2 enhanced oil recovery and storage in residual oil zones. Scientific reports, 10(1), 1-16. https://doi.org/10.1038/s41598-020-73931-2

Thomassen, M. A., van Calker, K. J., Smits, M. C., Iepema, G. L., & de Boer, I. J. (2008). Life cycle assessment of conventional and organic milk production in the Netherlands. Agricultural systems, 96(1-3), 95-107. https://doi.org/10.1016/j.agsy.2007.06.001

Walls, J.L., & Paquin, R.L. (2015). Organizational perspectives of industrial symbiosis: a review and synthesis. Organization & Environment, 28, 32e53. https://doi.org/10.1177/ 1086026615575333.

Wilson, M., Paschen, J., & Pitt, L. (2021). The Circular Economy Meets Artificial Intelligence (AI): Understanding the Opportunities of AI for Reverse Logistics. Management of Environmental Quality: An International Journal, 114(1), 473–480. doi:10.1108/MEQ-10-2020-0222.

Wishart, L., & Antheaume, N. (2021). Accounting for circularity. In J. Bebbington, C. Larrinaga, B. O’Dwyer, & I. Thomson (Eds), Handbook of Environmental Accounting (pp. 251-262). London, UK: Routledge. https://doi.org/10.4324/9780367152369-21

York, A. M., Otten, C. D., BurnSilver, S., Neuberg, S. L., & Anderies, J. M. (2021). Integrating institutional approaches and decision science to address climate change: a multi-level collective action research agenda. Current Opinion in Environmental Sustainability, 52, 19-26. https://doi.org/10.1016/j.cosust.2021.06.001

Zeng, H., Chen, X., Xiao, X., & Zhou, Z. (2017). Institutional pressures, sustainable supply chain management, and circular economy capability: Empirical evidence from Chinese eco-industrial park firms. Journal of Cleaner Production, 155, 54-65. https://doi.org/10.1016/j.jclepro.2016.10.093

Zhang, H., Goodfellow, I., Metaxas, D., & Odena, A. (2019). Self-attention generative adversarial networks. In International conference on machine learning (pp. 7354-7363). Available at https://arxiv.org/pdf/1805.08318.pdf

Zhong, X., & Enke, D. (2017). Forecasting daily stock market return using dimensionality reduction. Expert Systems with Applications, 67(1), 126-139. https://doi.org/10.1016/j.eswa.2016.09.027

Publicado
15-10-2023
Cómo citar
Jesse, F. F., Antonini, C., & Luque-Vilchez, M. . (2023). Una red de contabilidad de la circularidad: Medición del CO2 a lo largo de las cadenas de suministro mediante aprendizaje automático: A circularity accounting network: CO2 measurement along supply chains using machine learning. Revista de Contabilidad - Spanish Accounting Review, 26(Special), 21–33. https://doi.org/10.6018/rcsar.564901
Número
Sección
Artículos

Artículos similares

También puede {advancedSearchLink} para este artículo.