Un enfoque de ciencia de datos para la toma de decisiones en la estimación de costes - Big Data y aprendizaje automático
A Data Science Approach to Cost Estimation Decision Making - Big Data and Machine Learning
Resumen
La estimación de costes puede resultar cada vez más difícil, lenta y consumidora de recursos cuando no puede realizarse de forma analítica. Cuando las técnicas tradicionales de estimación de costes son utilizadas en esas circunstancias se presentan importantes limitaciones. Este artículo analiza las posibles aplicaciones de la ciencia de datos a la contabilidad de gestión, a través del caso de una tarea de estimación de costes publicada en Kaggle, un sitio web de ciencia de datos y aprendizaje automático de Google. Cuando existen muchos datos, las técnicas de aprendizaje automático pueden superar algunas de esas limitaciones. La aplicación del aprendizaje automático a los datos revela patrones y relaciones no evidentes que pueden utilizarse para predecir los costes de nuevos montajes con una precisión aceptable. En nuestra investigación se analizan las ventajas y limitaciones de este enfoque y su potencial para transformar la estimación de costes y, más ampliamente, la contabilidad de gestión. La multinacional Caterpillar publicó un concurso en Kaggle para estimar el precio que un proveedor ofrecería por la fabricación de una serie de conjuntos industriales, dados los presupuestos históricos de conjuntos similares. Hasta ahora, este problema habría requerido una ingeniería inversa de la estructura contable del proveedor para establecer la estructura de costes de cada ensamblaje, identificando relaciones no obvias entre las variables. Esta compleja y tediosa tarea suele ser realizada por expertos humanos, lo que añade subjetividad al proceso.
Descargas
Citas
Appelbaum, D., Kogan, A., Vsarhelyi, M., & Yan, Z. (2017). Impact of business analytics and enterprise systems on managerial accounting. International Journal of Accounting Information Systems, 25. 29-44. https://doi.org/10.1016/j.accinf.2017.03.003
Bhimani, A. (2020). Digital data and management accounting: why we need to rethink research methods. Journal of Management Control, 31(1-2), 9-23. https://doi.org/10.1007/s00187-020-00295-z
Bhimani, A. (2015). Exploring big data's strategic consequences. Journal of Information Technology, 30(1), 66-69. https://doi.org/10.1057/jit.2014.29
Bhimani, A., & Willcocks, L. (2014). Digitisation, 'big data' and the transformation of accounting information. Accounting and Business Research, 44(4), 469-490. https://doi.org/10.1080/00014788.2014.910051
Bode, J. (1998). Decision support with neural networks in the management of research and development: Concepts and application to cost estimation. Information and Management, 34(1), 33-40. https://doi.org/10.1016/S0378-7206(98)00043-3
Cohn, M. (2019). IMA plans to update CMA exam with more of a tech focus. https://www.accountingtoday.com/news/ima%2dplans%2dto%2dupdate%2dcma%2dexam%2dwith%2dmore%2dof%2da%2dtechnology%2dfocus
Court, D. (2012). Putting big data and advanced analytics to work. McKinsey Quarterly, 103-109.
Curran, R., Raghunathan, S., & Price, M. (2004). Review of aerospace engineering cost modelling: The genetic causal approach. Progress in Aerospace Sciences, 40(8), 487-534. https://doi.org/10.1016/j.paerosci.2004.10.001
Davenport, T. H. (2014). Big data at work: Dispelling the myths, uncovering the opportunities. Boston, MA: HBS Press.
Drakos, G. (2018). How to select the right evaluation metric for machine learning models: Part 2 regression metrics. Towards Data Science. Available at https://towardsdatascience.com/how%2dto%2dselect%2dthe%2dright%2devaluation%2dmetric%2dfor%2dmachine%2dlearning%2dmodels%2dpart%2d2%2dregression%2dmetrics%2dd4a1a9ba3d74
Duverlie, P., & Castelain, J. M. (1999). Cost estimation during design step: Parametric method versus case based reasoning method. International Journal of Advanced Manufacturing Technology, 15(12), 895-906. https://doi.org/10.1007/s001700050147
Esawi, A., & Ashby, M. F. (2003). Cost estimates to guide pre-selection of processes. Materials and Design, 24(8), 605-616. https://doi.org/10.1016/S0261-3069(03)00136-5
Fang, B., & Zhang, P. (2016). Big Data in Finance. In S. Yu & S. Guo (Eds.), Big Data Concepts, Theories, and Applications (pp 391-412). Cham: Springer. https://doi.org/10.1007/978-3-319-27763-9_11
Geddes, B. (2020). Emerging technologies in management accounting. Journal of Economics and Business, 13(1), 152-159. https://doi.org/10.31014/aior.1992.03.01.185
Gepp, A., Linnenluecke, M. T., Smith, T., & O'Neill, T. (2018). Big data in accounting and finance: A review of influential publications and a research agenda. In Adrian Gepp (Chair), 4th Forensic Accounting Teaching and Research Symposium. Symposium conducted at Bond University (Australia).
Glowacki, J., & Reichoff, M. (2017). Effective model validation using machine learning. Milliman White Paper, May.
Griffin, P., & Wright, A. (2015). Commentaries on big data's importance for accounting and auditing. Accounting Horizons, 29(2), 377-379. https://doi.org/10.2308/acch-51066
Hadid, W. (2019). Lean service, business strategy and ABC and their impact on firm performance. Production Planning & Control, 30(14), 1203-1217, https://doi.org/10.1080/09537287.2019.1599146
Hansen, S., & Van der Stede, W. (2004). Multiple facets of budgeting: An exploratory analysis. Management Accounting Research, 15(4), 415-439. https://doi.org/10.1016/j.mar.2004.08.001
Hey, T., Tansley, S., & Tolle, K. (2009). The Fourth Paradigm: Data-Intensive Scientific Discovery. Washington: Ed. Microsoft Research. Retrieved from https://www.microsoft.com/en-us/research/wp-content/uploads/2009/10/Fourth_Paradigm.pdf
Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feed-forward networks are universal approximators. Neural Networks, 2(5), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8
Hueber, Ch., Horejsi, K., & Schledjewski, R. (2016). Review of cost estimation: methods and models for aerospace composite manufacturing. Advanced Manufacturing: Polymer Composite Science, 2, 1-13. https://doi.org/10.1080/20550340.2016.1154642
Kanstens, K. (2012). Is the fourth paradigm really new? Retrieved from https://serc.carleton.edu/earthandmind/posts/4thpardigm.html
Karbhari, V. M., & Jones, S. K. (2014). Activity-based costing and management in the composites product realization process. International Journal of Materials and Product Technology, 7(3), 232-244.
Krahel, J. P., & Titera, B. (2015). Commentaries on big data's importance for accounting and auditing. Accounting Horizons, 29(2), 409-422. https://doi.org/10.2308/acch-51065
Kogan, A., Alles, M. G., Vasarhelyi, M. A., & Wu, J. (2014). Design and evaluation of a continuous data-level auditing system. Auditing: A Journal of Practice & Theory, 33(4), 221-245. https://doi.org/10.2308/ajpt-50844
Lawson, R. (2019). New competencies for management accountants. CPA Journal, 89(9), 18-21.
Mandolini, M., Campi, F., Favi, C., Germani, M., & Raffaeli, R. (2020). A framework for analytical cost estimation of mechanical components based on manufacturing knowledge representation. International Journal of Advanced Manufacturing Technology, 107, 1131-1151. https://doi.org/10.1007/s00170-020-05068-5
McKinney, E., Yoos, C., & Snead, K. (2017). The need for 'skeptical' accountants in the era of Big Data. Journal of Accounting Education, 38, 63-80. https://doi.org/10.1016/j.jaccedu.2016.12.007
NASA. (2008). NASA cost estimating handbook. Washington, DC: National Aeronautics and Space Administration.
Niazi, A., Dai, J. S., Balabani, S., & Seneviratne, L. (2006). Product cost estimation: Technique classification and methodology review. Journal of Manufacturing Science and Engineering, 128(2), 563-575. https://doi.org/10.1115/1.2137750
O'Leary, D. E. (2013). 'Big data', the 'internet of things' and the 'internet of signs'. Intelligent Systems in Accounting, Finance and Management, 20 (1), 53-65. https://doi.org/10.1002/isaf.1336
Price Waterhouse Coopers (2018). Chief financial officers-Priorities in 2018. Retrieved from https://www.pwc.fr/fr/assets/files/pdf/2018/01/priorites-2018-du-directeur-financier_eng.pdf
Rifkin, J. (2014). The zero marginal cost society: The internet of things, the collaborative commons, and the eclipse of capitalism. Hampshire, UK: Palgrave Macmillan.
Rikhardsson, P., & Yigitbasioglu, O. (2018). Business intelligence & analytics in management accounting research: status and future focus. International Journal of Accounting Information Systems, 29, 37-58. https://doi.org/10.1016/j.accinf.2018.03.001
Roy, R. (2003). Cost engineering: Why, what and how? Decision Engineering Report (DEG) Series, Cranfield, UK. Retrieved from https://dspace.lib.cranfield.ac.uk/handle/1826/64
Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85-117. https://doi.org/10.1016/j.neunet.2014.09.003
Shen, J., Erkoyuncu, J., Roy, R., & Wu, B. (2017). A framework for cost evaluation in product service system configuration. International Journal of Production Research, 55(20), 6120-6144. https://doi.org/10.1080/00207543.2017.1325528
Smith, D., & Driscoll, T. (2017). Partnering with data scientists for management accounting success. Strategic Finance, 98(11), 70-71.
Steen, N. (2018). Reflections on the applicability of business analytics for management accounting and future perspectives for the accountant. Journal of Accounting and Organizational Change, 14(2). 167-187. https://doi.org/10.1108/JAOC-11-2014-0056
Tang, J. J., & Karim, K. (2017). Big data in accounting. Internal Auditing Review, 32, 29-31.
Van der Alst, W. (2016). Data Science in Action. In Process Mining (pp. 3-23). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-662-49851-4_1
Vasarhelyi, M., Kogan, A., & Tuttle, B. (2015). Big data in accounting: An overview. Accounting Horizons, 29(2), 381-396. https://doi.org/10.2308/acch-51071
Warren, J. D. Jr., Moffitt, K.C., & Byrnes, P. (2015). How big data will change accounting. Accounting Horizons, 29(2), 397-407. https://doi.org/10.2308/acch-51069
Yakubovskyi, V., Bychkov, O., Dimitrov, G. P., & Panayotova, G. (2017). Combined neural network model for real estate market range value estimation. In J. Stando (Ed.), Proceedings of the Fourth International Conference on Artificial Intelligence and Pattern Recognition (pp. 11-16). Lodz, Poland.
Derechos de autor 2022 Revista de Contabilidad - Spanish Accounting Review
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Las obras que se publican en esta revista están sujetas a los siguientes términos:
1. Ediciones de la Universidad de Murcia (EDITUM) y ASEPUC conservan los derechos patrimoniales (copyright) de las obras publicadas, y favorece y permite la reutilización de las mismas bajo la licencia de uso indicada en el punto 2.
2. Las obras se publican en la edición electrónica de la revista bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. Permite copiar, distribuir e incluir el artículo en un trabajo colectivo (por ejemplo, una antología), siempre y cuando no exista una finalidad comercial, no se altere ni modifique el artículo y se cite apropiadamente el trabajo original. Esta revista no tiene tarifa por la publicación Open Access. ASEPUC y EDITUM financian los costes de producción y publicación de los manuscritos.
3. Condiciones de auto-archivo. Se permite y se anima a los autores a difundir electrónicamente la versión publicada de sus obras, ya que favorece su circulación y difusión y con ello un posible aumento en su citación y alcance entre la comunidad académica.