Pérdida prevista según la NIIF 9: una propuesta de modelo para la estimación de la probabilidad de impago en las empresas sin rating

IFRS 9 Expected Loss: A Model Proposal for Estimating the Probability of Default for non-rated companies

Autores/as

DOI: https://doi.org/10.6018/rcsar.370951
Palabras clave: NIIF 9, Deterioro de Activos Financieros, Probabilidad de Quiebra, Rating Crediticio

Resumen

Bajo el modelo de provisiones por riesgo de crédito de la NIIF 9, las empresas deben estimar una Probabilidad de Default o quiebra (PD) para todos los activos financieros (y otros elementos) no valorados a valor razonable con cambios en la cuenta de resultados. Existen varias metodologías para estimar dicha PD utilizando información histórica o de mercado. No obstante, en algunos casos las empresas no disponen de información histórica o de mercado acerca de una contraparte. Para estos casos proponemos un modelo denominado Financial Ratios Scoring (FRS), a través del cual la entidad puede obtener un rating interno de la contraparte como primer paso para estimar la PD. El modelo se diferencia de otros modelos recientes en varios aspectos como, por ejemplo, el tamaño de la base de datos o el hecho de que se enfoca en empresas sin rating. Se basa en dar una puntuación a la contraparte en función de sus ratios financieros clave. La puntuación sitúa a la empresa en un percentil dentro de una distribución del sector previamente construida utilizando empresas con rating oficial u ofrecido por vendors. Hemos analizado la fiabilidad del modelo calculando el rating interno para empresas con rating oficial y hemos comparado el rating interno con el oficial, obteniendo resultados positivos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alissa, W., Bonsall, S.B., Koharki, K., & Penn, M.W. (2013). Firms' use of accounting discretion to influence their credit ratings. Journal of Accounting and Economics, 55, 129--147. https://doi.org/10.1016/j.jacceco.2013.01.001

Altman, E.I. (1968). Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. Journal of Finance, 23 (4), 589-609. https://doi.org/10.1111/j.1540-6261.1968.tb00843.x

Altman, E.I., Haldeman, R.G., & Narayanan, P. (1977). ZETA^TM^ analysis. A new model to identify bankruptcy risk of corporations. Journal of Banking & Finance 1 (1), 29-54

Altman, E. I., Brady, B., Resti, A., & A. Sironi (2005). 'The Link Between Default and Recovery Rates: Theory, Empirical Evidence, and Implications. Journal of Business, 78, (6), 2203--2228. http://dx.doi.org/10.1086/497044

Basel Committee of Banking Supervision (BCBS). (2009). Guiding principles for the replacement of IAS 39. Available at: http://www.bis.org/publ/bcbs161.pdf.

Beaver, W.H. (1966). Financial ratios as predictors of failure. J. Account. Res. 4, 71--111. https://www.jstor.org/stable/10.2307/2490171

Beerbaum, D. (2015). Significant Increase in Credit Risk According to IFRS 9: Implications for Financial Institutions. International Journal of Economics & Management Sciences. Available at: https://pdfs.semanticscholar.org/b700/d412674ceae6030745437abe057894dc1cd6.pdf

Black, F., & Scholes, M. (1973). The Pricing of Options and Corporate Liabilities. Journal of Political Economy, 81 (3), 637-654. http://www.jstor.org/stable/1831029

Campbell, J., Hilscher, J., & Szilagyi, J. (2008). In search of distress risk. J. Finance 63 (6), 2899--2939. http://dx.doi.org/10.2139/ssrn.770805

Cappon, A., Gorenstein, A., Mignot, S., & Manuel, G. (2018). Credit Ratings, Default Probabilities, and Logarithms. Journal of Structured Finance, 24 (1) 39-49. https://doi.org/10.3905/jsf.2018.24.1.039

Chava, S., & Jarrow, R., (2004). Bankruptcy prediction with industry effects. Rev. Finance 8 (4), 537--569. https://doi.org/10.1093/rof/8.4.537

Creal, D. D., Gramacy, R. B., & Tsay, R. S. (2014). "Market-based Credit Ratings". Journal of Business and Economic Statistics, 32 (3), 430-444. https://doi.org/10.1080/07350015.2014.902763

Duan, J.C., Sun, J., & Wang, T. (2012). Multiperiod corporate default prediction -- A forward intensity approach. Journal of Econometrics 170, 191--209. https://doi.org/10.1016/j.jeconom.2012.05.002

Duan, J.C., Kim, B., Kim, W., & Shin, D. (2018). "Default Probabilities of Privately Held Firms". Journal of Banking and Finance, 94, 235-250.https://doi.org/10.1016/j.jbankfin.2018.08.006

Duffee, G.R. (1999). "Estimating the Price of Default Risk". The Review of Financial Studies, 12 (1), 197-226. https://doi.org/10.1093/rfs/12.1.197

Ederington, L.H. (1985). Classification Models and Bond Ratings. Financial Review, 20 (4), 237-262. https://doi.org/10.1111/j.1540-6288.1985.tb00306.x

EY (2016). Applying IFRS. IFRS 9 for non-financial entities. Available at: https://www.ey.com/Publication/vwLUAssets/Applying_IFRS_%E2%80%93_IFRS_9_for_non-financial_entities/$FILE/Applying-FI-Mar2016.pdf

EY (2018). IFRS 9 Expected Credit Loss Making sense of the transition impact. Available at: https://www.ey.com/Publication/vwLUAssets/ey-ifrs-9-expected-credit-loss/$File/ey-ifrs-9-expected-credit-loss.pdf

EY (2019). International GAAP 2019. Wiley. UK.

Fazzini, M. (2018). Business Valuation. Theory and Practice. Palgrave Macmillan. https://doi.org/10.1007/978-3-319-89494-2

Financial Crisis Advisory Group (FCAG) (2009). Report of the financial crisis advisory group. Available at: http://www.ifrs.org/News/Press-Releases/Documents/FCAGReportJuly2009.pdf

Financial Stability Forum (FSF) (2009). Report of the financial stability forum on addressing procyclicality in the financial system. Available at: http://www.financialstabilityboard.org/wp-content/uploads/r_0904a.pdf

G20 (2009). London summit -- Leader's statement 2 April 2009. Available at: https://www.imf.org/external/np/sec/pr/2009/pdf/g20_040209.pdf

Holt, O., & McCarroll, J. (2015). IFRS 9 not just for banks, you know! Accountancy Ireland, 47 (3), 18-20.

Hronsky, J. (2010). IFRS 9 impairment and procyclicality: is the cure worse than the disease?. JASSA The Finsia Journal of Applied Finance, 4, 55-59.

Hull, J.C. (2018). Options, Futures and Other Derivatives. Tenth Edition. Pearson. New York.

Hull, J. C., Predescu, M., & White, A. (2004). Relationship between Credit Default Swap Spreads, Bond Yields, and Credit Rating Announcements. Journal of Banking and Finance, 28, 2789--2811. https://doi.org/10.1016/j.jbankfin.2004.06.010

Ivanovic, Z., Bogdan, S., & Baresa, S. (2015). Modeling and Estimating Shadow Sovereign Ratings. Contemporary Economics, 9 (3), 367-384. http://dx.doi.org/10.5709/ce.1897-9254.175

Jiang, Y. (2018). Semiparametric Estimation of a Credit Rating Model. SSRN electronic journal. Available at: https://www.garp.org/#!/risk-intelligence/all/all/a1Z1W000004B9vfUAC

Kamstra, M., Kennedy, P., & Suan, T.K. (2001). Combining Bond Rating Forecasts Using Logit. Financial Review, 36 (2), 75-96. https://doi.org/10.1111/j.1540-6288.2001.tb00011.x

Kaplan, R. S., & Urwitz, G. (1979). Statistical Models of Bond Ratings: A Methodological Inquiry. The Journal of Business, 52 (2), 231-261. http://dx.doi.org/10.1086/296045

Koulafetis, P. (2017). Credit Risk Transfer and Mitigation. In Modern Credit Risk Management (pp. 187-206). Palgrave Macmillan, London. ISBN 978-1-137-52407-2. https://link.springer.com/book/10.1057/978-1-137-52407-2

Longstaff, F., & Schwartz, E.S. (1995). "A Simple Approach to Valuing Risky Fixed and Floating Rate Debt". Journal of Finance, 50(3), 789-819. https://doi.org/10.1111/j.1540-6261.1995.tb04037.x

McConnell (2014). New Hedge Accounting Model Will Improve Investor Understanding of Risk Management. Available at: https://www.ifrs.org/-/media/feature/resources-for/investors/investor-perspectives/investor-perspective-jun-2014.pdf

Merton, R.C. (1974). On the Pricing of Corporate Debt: The Risk Structure of Interest Rates. The Journal of Finance, 29 (2), 449-470. https://doi.org/10.1111/j.1540-6261.1974.tb03058.x

Moody's (2017). Annual Default Study: Corporate Default and Recovery Rates, 1920 - 2017. Available at: https://www.moodys.com/researchdocumentcontentpage.aspx? docid=PBC_1059749

Moody's (2017b). Moody's Financial Metrics™ Key Ratios by Rating and Industry for Global NonFinancial Corporates: December 2016. Available at: https://www.researchpool.com/download/?report_id=1537315&show_pdf_data=true

Moody's (2017c). Global Surface Transportation and Logistics Companies. Moody's Investor Service.

Moody's (2017d). Equipment and Transportation Rental Industry. Moody's Investor Service.

Moody's (2018). Annual Default Study: Corporate Default and Recovery Rates, 1920 - 2017. Available at: https://www.researchpool.com/download/?report_id=1751185&show_pdf_data=true

Novotny-Farkas, Z. (2016). The Interaction of the IFRS 9 Expected Loss Approach with Supervisory Rules and Implications for Financial Stability. Accounting in Europe, 13 (2), 197--227. https://doi.org/10.1080/17449480.2016.1210180

Ohlson, J.A., (1980). Financial ratios and the probabilistic prediction of bankruptcy. J. Account. Res. 18 (1), 109--131. http://hdl.handle.net/10.2307/2490395

Ou, S., Chiu, D., & Metz, A. (2016). Annual Default Study: Corporate Default and Recovery Rates, 1920-2015. Moody's Investor Service, (May), 1--76. Available at: https://www.moodys.com/researchdocumentcontentpage.aspx?docid=PBC_1018455

Schönbucher, P.J. (2003). Credit Derivatives Pricing Models. 1st Ed. Chichester: John Wiley & Sons.

Tascón, M. T., & Castaño, F. J. (2012). Variables y modelos para la identificación y predicción del fracaso empresarial: revisión de la investigación empírica reciente (Variables and Models for the Identification and Prediction of Business Failure: Revision of Recent Empirical Research Advances). Revista de Contabilidad/Spanish Accounting Review, 15, 7-58.

Tsay, R.S., & Zhu, H. (2017). Market-Based Credit Rating and Its Applications. Chapter 7 of Applied Quantitative Finance. Springer. Germany. ISBN 978-3-662-54485-3.

Vazza, D., & Kraemer, N. (2018). 2017 Annual Global Corporate Default Study and Rating Transitions. Standard and Poor's report. Available at: https://www.spratings.com/documents/20184/774196/2017+Annual+Global+Corporate+Default+Study/a4cffa07-e7ca-4054-9e5d-b52a627d8639

Publicado
01-07-2020
Cómo citar
Delgado-Vaquero, D., Morales-Díaz, J., & Zamora-Ramírez, C. (2020). Pérdida prevista según la NIIF 9: una propuesta de modelo para la estimación de la probabilidad de impago en las empresas sin rating: IFRS 9 Expected Loss: A Model Proposal for Estimating the Probability of Default for non-rated companies. Revista de Contabilidad - Spanish Accounting Review, 23(2), 180–196. https://doi.org/10.6018/rcsar.370951
Número
Sección
Artículos