Psychometric validation of a scale to measure vulnerability to HIV in school-attending adolescents

Authors

DOI: https://doi.org/10.6018/eglobal.648031
Keywords: Vulnerability, HIV, Adolescents, Factor Analysis, Ps, Psychometrics

Abstract

Introduction: This study validates a scale to measure vulnerability to HIV in school-attending adolescents. The results show a solid factorial structure and high reliability, supporting its use in research and prevention.

Objective: This study aimed to determine the validity and reliability of the Scale for Vulnerability to HIV in School-Aged Adolescents.

Methodology: A cross-sectional, instrumental, descriptive study was conducted with a random sample of 890 adolescents aged 14 to 21 years, enrolled in public schools in Bogotá, Colombia. Construct validity was assessed using Exploratory Factor Analysis (EFA), and reliability was evaluated through Cronbach's alpha coefficient.

Results: The EFA identified ten factors related to HIV vulnerability, such as school-based sexual education, partner maltreatment, risky sexual behaviors, and self-image, explaining 57% of the total variance. Factor loadings ranged from 0.49 to 0.93, and reliability coefficients (Cronbach's alpha) ranged from 0.71 to 0.93. These results enabled the development of the EVA scale, designed to measure HIV vulnerability in school-aged adolescents.

Conclusion: The EVA scale demonstrated strong psychometric properties, and its use is recommended to identify HIV vulnerability in adolescents with characteristics similar to the studied population.

Downloads

Download data is not yet available.
Metrics
Views/Downloads
  • Abstract
    156
  • ESP_PDF (Español (España))
    87
  • ENG_PDF
    18
  • XML (Español (España))
    0

References

ONUSIDA. Día Mundial del Sida 2023: hoja informativa — últimas estadísticas sobre el estado de la epidemia de sida [Internet]. Ginebra: ONUSIDA; 2023 [citado 2024 abr 16]. Disponible en: https://www.unaids.org/es/resources/fact-sheet

Mody A, Sohn AH, Iwuji C, Tan RKJ, Venter F, Geng EH. HIV epidemiology, prevention, treatment, and implementation strategies for public health. Lancet. 2024 Feb 3;403(10425):471–92. Available from: https://doi.org/10.1016/S0140-6736(23)01381-8

Instituto Nacional de Salud (INS). Informe de evento: primer semestre VIH, sida y muerte por sida, 2023 [Internet]. Bogotá D.C.: Instituto Nacional de Salud; 2023 [citado 2024 abr 16]. Disponible en: https://www.ins.gov.co/buscador-eventos/Informesdeevento/VIH

Mann J, Tarantola D. AIDS in the world. New York: Oxford University Press; 1996.

Hair JF, Black WC, Babin BJ, Anderson RE. Multivariate data analysis. 7th ed. Harlow, Essex: Pearson Education Limited; 2014.

Tristán-López A. Modificación al modelo de Lawshe para el dictamen cuantitativo de la validez de contenido de un instrumento objetivo. Av Medición [Internet]. 2008;6(1):37–48 [citado 2025 jun 19]. Disponible en: https://www.humanas.unal.edu.co/lab_psicometria/application/files/9716/0463/3548/VOL_6._Articulo4_Indice_de_validez_de_contenido_37-48.pdf

Telpiz-De La Cruz SG. Diseño y validación de un instrumento para medir la vulnerabilidad al VIH en adolescentes escolarizados en colegios [tesis doctoral en Internet]. Bogotá: Universidad Nacional de Colombia; 2021 [citado 2025 jun 19]. Disponible en: https://repositorio.unal.edu.co/handle/unal/79612

Sposito VA, Hand ML, Skarpness B. On the efficiency of using the sample kurtosis in selecting optimal LP estimators. Commun Stat – Simul Comput. 1983;12(3):265–72. Available from: https://doi.org/10.1080/03610918308812318

Micceri T. The unicorn, the normal curve, and other improbable creatures. Psychol Bull. 1989;105(1):156–66. Available from: https://doi.org/10.1037/0033-2909.105.1.156

Bentler PM. EQS 6 structural equations program manual. Encino, CA: Multivariate Software, Inc.; 2006.

Kraal AZ, Massimo L, Fletcher E, Carrión CI, Medina LD, Mungas D, et al. Functional reserve: the residual variance in instrumental activities of daily living not explained by brain structure, cognition, and demographics. Neuropsychology. 2021 Jan;35(1):19–32. Available from: https://doi.org/10.1037/neu0000705

Savahl S, Casas F, Adams S. Considering a bifactor model of children’s subjective well being using a multinational sample. Child Indic Res [Internet]. 2023; 16: 2253–78. Available from: https://doi.org/10.1007/s12187-023-10058-6

Goretzko D, Pham TTH, Bühner M. Exploratory factor analysis: current use, methodological developments and recommendations for good practice. Curr Psychol [Internet]. 2021;40(7):3510–21. Available from: https://doi.org/10.1007/s12144-019-00300-2

Geisinger KF, Bracken BA, Carlson JF, Hansen JI, Kuncel NR, Reise SP, Rodríguez MC, eds. APA Handbook of Testing and Assessment in Psychology. Vol. 1. Washington, DC: American Psychological Association; 2013.

Rudgard WE, Saminathen MG, Orkin M, Banougnin BH, Shenderovich Y, Toska E, et al. Protective factors for adolescent sexual risk behaviours and experiences linked to HIV infection in South Africa: a three wave longitudinal analysis of caregiving, education, food security, and social protection. BMC Public Health [Internet]. 2023; 23: 408. Available from: https://doi.org/10.1186/s12889-023-16373-5

Howes A, Risher KA, Nguyen VK, Stevens O, Jia KM, Wolock TM, et al. Spatio-temporal estimates of HIV risk group proportions for adolescent girls and young women across 13 priority countries in sub-Saharan Africa. PLOS Glob Public Health [Internet]. 2023 Apr;3(4): e0001731. Available from: https://doi.org/10.1371/journal.pgph.0001731

Published
09-09-2025
How to Cite
[1]
Telpiz-de la Cruz, S.G. and Castejón Costa, J.L. 2025. Psychometric validation of a scale to measure vulnerability to HIV in school-attending adolescents. Global Nursing. 24, 2 (Sep. 2025). DOI:https://doi.org/10.6018/eglobal.648031.
Issue
Section
ORIGINAL RESEARCH