La automaticidad en las restas depende del tamaño del problema
Resumen
Existe considerable evidencia que muestra que las multiplicaciones y las sumas simples se resuelven de manera directa y automática. Sin embargo, la evidencia sobre la automaticidad de restas y divisiones es menos convincente. Usando el paradigma de interferencia en la operación, el presente estudio explora si el resultado de una resta puede ser recuperado inintencionadamente y el rol que juega el tamaño del problema en este proceso. Sesenta y dos participantes tomaron parte en este estudio y tenían que decidir si el resultado de una adición era o no correcto. En las adiciones incorrectas el resultado podía ser la sustracción de los sumandos (7 + 4 = 3) o un número no relacionado (7 + 4 = 5). Nuestros resultados mostraron más errores y respuestas más lentas en aquellos problemas cuyo resultado era la sustracción de los sumandos que en los problemas no relacionados. Sin embargo, estos resultados sólo se encontraron en problemas pequeños (7 + 4 = 3 vs. 7 + 4 = 5) y no en problemas más grandes (14 + 8 = 6 vs. 14 + 8 = 7). Estos resultados sugieren que las sustracciones pequeñas pueden ser recuperadas directamente, cuestionando la existencia de disociaciones entre operaciones. Argumentamos que dependiendo de nuestra experiencia, las mismas representaciones y procesos pueden estar implicados en la resolución de multiplicaciones, adiciones y sustracciones.Descargas
Citas
Ashcraft, M. H. (1987). Children's knowledge of simple arithmetic: A developmental model and simulation. In J. Bisanz, C.J. Brainerd, & R. Kail (Eds.), Formal methods in developmental psychology: Progress in cognitive development research (pp. 302-338). New York: Springer-Verlag.
Ashcraft, M. H. (1992). Cognitive arithmetic: a review of data and theory. Cognition, 44, 75-106.
Ashcraft, M. H., & Battaglia, J. (1978). Cognitive arithmetic: Evidence for retrieval and decision processes in mental addition. Journal of Experimental Psychology: Human Memory and Learning, 4, 527–538.
Ashcraft, M. H., & Christy, K. S. (1995). The frequency of arithmetic facts in elementary texts: Addition and multiplication in grades 1–6. Journal for Research in Mathematics Education, 26(5), 396–421.
Beringer, J. (1999). Experimental Run Time System (ERTS). Frankfurt: BeriSoft Cooperation.
Campbell, J. I. D. (2005). The Handbook of Mathematical Cognition. New York: Psychology Press.
Campbell, J. I. D. (2008). Subtraction by addition. Memory & Cognition, 36, 1094-1102.
Campbell, J. I. D., & Alberts, N. A. (2010). Inverse reference in adults’ elementary arithmetic. Canadian Journal of Experimental Psychology, 64, 77-85.
Campbell, J. I. D., & Xue, Q. (2001). Cognitive arithmetic across cultures. Journal of Experimental Psychology: General, 130, 299-315.
Campbell, J.I.D. (1987). Network interference and mental multiplication. Journal of Experimental. Psychology: Learning, Memory, & Cognition, 13, 109-123.
Cipolotti, L., & Butterworth, B. (1995). Toward a multiroute model of number processing: impaired number transcoding with preserved calculation skills. Journal of Experimental Psychology: General, 124, 375-390.
Dehaene S. (1992) Varieties of numerical abilities. Cognition, 44, 1-42.
Dehaene, S. & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1, 83 – 120.
Dehaene, S., & Cohen, L. (1997). Cerebral pathways for calculation: Double dissociation between rote verbal and quantities knowledge of arithmetic. Cortex, 33(2), 219–250.
Dehaene, S., Mehler, J. (1992) Cross-Linguistic Regularities in the Frequency of Number Words. Cognition, 43(1) 1-29.
Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487-506.
Fayol, M., & Thevenot, C. (2012). The use of procedural knowledge in simple addition and subtraction problems. Cognition, 123, 392-403.
Galfano, G., Rusconi, E. & Umiltá, C. (2003). Automatic activation of multiplication facts: Evidence from the nodes adjacent to the product. The Quarterly Journal of Experimental Psychology, 56A, 31-61.
García Orza, J., Damas, J., Matas & Rodríguez, J. M. (2009). 2x3 =’ primes naming ‘6’: evidences from unconscious masked priming. Attention,Perception & Psychophysics, 71(3), 471-480.
Geary, D. C., Frensch, P. A., & Wiley, J. G. (1993). Simple and complex mental subtraction: Strategy choice and speed-of-processing differences in younger and older adults. Psychology and Aging, 8, 242-256.
Hecht, S. A. (1999). Individual solution processes while solving addition and multiplication math facts in adults. Memory & Cognition, 27, 1097-1107.
Imbo, I. & Vandierendonck, A. (2008). Effects of problem-size, opera-tion, and working-memory span on simple-arithmetic strategies: Differences between children and adults? Psychological Research, 72, 331-346.
Kirk, E. P., & Ashcraft, M. H. (2001). Telling stories: The perils and promise of using verbal reports to study math strategies. Journal of Experimental Psychology: Learning,Memory, & Cognition, 27, 157-175.
Lara, V., García Orza, J. y Carratalá, P. (2009). Cuando 7+3 parece correcto: resolución automática de las restas en una tarea de verificación. Escritos de Psicología, 2 (3), 35-39.
LeFevre, J. A., Bisanz, J., & Mrkonjic, L. (1988). Cognitive arithmetic: Evidence for obligatory activation of arithmetic facts. Memory & Cognition, 16, 45-53.
LeFevre, J. A., Bisanz, J., Daley, K. E., Buffone, L., Greenham, S. L., & Sadesky, G. S. (1996). Multiple routes to solution of single digit multiplication problems. Journal of Experimental Psychology: General, 125, 284-306.
LeFevre, J. A. DeStefano, D. Penner-Wilger, M. Daley , E. (2006). Selection of procedures in mental subtraction. Canadian Journal of Experimental Psychology, 60(3), 209-220.
Mauro, D. G., LeFevre, J., & Morris, J. (2003). Effects of problem for-mat on division and multiplication performance: Evidence for mediation of division by multiplication. Journal of Experimental Psychology: Learning, Memory, & Cognition, 29, 163-170.
McCloskey, M. (1992). Cognitive mechanisms in numerical processing: Evidence from acquired discalculia. Cognition, 44, 107 - 157.
Metcalfe, A. W. S., & Campbell, J. I. D. (2011). Strategies for simple addition and multiplication: verbal self-reports and the operand recognition paradigm. Journal of Experimental Psychology: Learning, Memory and Cognition, 37, 661-672.
Metcalfe, A. W. S., & Campbell, J. I. D. (2010). Switch costs and the operand recognition paradigm. Psychological Research, 74, 491–498.
Roussel, J. L., Fayol, M., & Barrouillet, P. (2002). From procedural computation to direct retrieval. European Journal of Cognitive Psycholo-gy, 14, 61-104.
Seyler, D. J., Kirk, E. P., & Ashcraft, M. H. (2003). Elementary subtrac-tion. Journal of Experimental Psychology: Learning, Memory, & Cognition, 29, 1339-1352.
Siegler, R. S., & Jenkins, E. (1989). How children discover new strategies. Hills-dale, NJ: Lawrence Erlbaum.
Thevenot, C., Castel, C., Fanget, M., & Fayol, M. (2010). Mental subtrac-tion in high and lower-skilled arithmetic problem solvers: Verbal report vs. operand-recognition paradigms. Journal of Experimental Psychology: Learning, Memory & Cognition, 36, 1242-1255.
Thevenot, C., Fanget, M., & Fayol, M. (2007). Retrieval or non-retrieval strategies in mental addition? An operand-recognition paradigm. Memory & Cognition, 35, 1344–1352.
Thibodeau, M. H., LeFevre, J., & Bisanz, J. (1996). The extension of the interference effect to multiplication. Canadian Journal of Experimental Psychology, 50, 393-396.
Winkelman, J. H., & Schmidt, J. (1974). Associative confusions in mental arithmetic. Journal of Experimental Psychology, 102, 734-736.
Zbrodoff, N. J., & Logan, G. D. (1986). On the autonomy of mental processes: A case study of arithmetic. Journal of Experimental Psychology: General, 115, 118-130.
Zbrodoff, N. J., & Logan, G. D. (2005). What everyone finds: The problem-size effect. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 331-345). New York: Psychology Press.
Zbrodoff, N. J., & Logan, G. D. (1986). On the autonomy of mental processes: A case study of arithmetic. Journal of Experimental Psychology: General, 115, 118-131.
Las obras que se publican en esta revista están sujetas a los siguientes términos:
1. El Servicio de Publicaciones de la Universidad de Murcia (la editorial) conserva los derechos patrimoniales (copyright) de las obras publicadas, y favorece y permite la reutilización de las mismas bajo la licencia de uso indicada en el punto 2.
© Servicio de Publicaciones, Universidad de Murcia, 2024
2. Las obras se publican en la edición electrónica de la revista bajo una licencia Creative Commons Reconocimiento-CompartirIgual 4.0 Internacional (texto legal). Se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que: i) se cite la autoría y la fuente original de su publicación (revista, editorial y URL de la obra); ii) no se usen para fines comerciales; iii) se mencione la existencia y especificaciones de esta licencia de uso.
3. Condiciones de auto-archivo. Se permite y se anima a los autores a difundir electrónicamente las versiones pre-print (versión antes de ser evaluada y enviada a la revista) y/o post-print (versión evaluada y aceptada para su publicación) de sus obras antes de su publicación, ya que favorece su circulación y difusión más temprana y con ello un posible aumento en su citación y alcance entre la comunidad académica. Color RoMEO: verde.