Automaticity in subtractions depends on problem-size

Authors

  • Alejandro J. Estudillo University of Kent
  • Estefania Bermudo Romero Universidad de Malaga
  • Nerea Casado Universidad de Malaga
  • Jay Prasad Das Universidad de Malaga
  • Javier Garcia-Orza Universidad de Málaga
DOI: https://doi.org/10.6018/analesps.31.2.173621
Keywords: Subtractions, automaticity, problem-size, arithmetic problem solving

Abstract

The evidence showing that simple multiplications and additions can be solved by direct retrieval is considerable. However evidence about division and subtraction is less compelling. By using a “cross-operation interference paradigm” the present research explores whether subtraction problems can be retrieved without intention and the role of operands’ problem-size in this process. Sixty-two participants decided whether the displayed addition was correct or not. In “false additions problems” the answer could be the result of the subtractions of the addends (e.g., 7 + 4 = 3) or an unrelated number (e.g., 7 + 4 = 5). Results showed an interference effect, that is, more errors and slower response times in subtraction related problems than in unrelated problems. More importantly, this effect was restricted to small problems (7 + 4 = 3 vs. 7 + 4 = 5), whereas no differences were found for large problems (14 + 8 = 6 vs. 14 + 8 = 7). These results suggest that small subtractions can be retrieved directly as multiplications, questioning a traditional dissociation between operations. We argue that, depending on individual experience, the same representation and processes can be involved in solving additions, subtractions and multiplications.

Downloads

Download data is not yet available.
Metrics
Views/Downloads
  • Abstract
    472
  • PDF
    294
  • Posibles revisores (Españ...
    294

References

Ashcraft, M. H. (1987). Children's knowledge of simple arithmetic: A developmental model and simulation. In J. Bisanz, C.J. Brainerd, & R. Kail (Eds.), Formal methods in developmental psychology: Progress in cognitive development research (pp. 302-338). New York: Springer-Verlag.

Ashcraft, M. H. (1992). Cognitive arithmetic: a review of data and theory. Cognition, 44, 75-106.

Ashcraft, M. H., & Battaglia, J. (1978). Cognitive arithmetic: Evidence for retrieval and decision processes in mental addition. Journal of Experimental Psychology: Human Memory and Learning, 4, 527–538.

Ashcraft, M. H., & Christy, K. S. (1995). The frequency of arithmetic facts in elementary texts: Addition and multiplication in grades 1–6. Journal for Research in Mathematics Education, 26(5), 396–421.

Beringer, J. (1999). Experimental Run Time System (ERTS). Frankfurt: BeriSoft Cooperation.

Campbell, J. I. D. (2005). The Handbook of Mathematical Cognition. New York: Psychology Press.

Campbell, J. I. D. (2008). Subtraction by addition. Memory & Cognition, 36, 1094-1102.

Campbell, J. I. D., & Alberts, N. A. (2010). Inverse reference in adults’ elementary arithmetic. Canadian Journal of Experimental Psychology, 64, 77-85.

Campbell, J. I. D., & Xue, Q. (2001). Cognitive arithmetic across cultures. Journal of Experimental Psychology: General, 130, 299-315.

Campbell, J.I.D. (1987). Network interference and mental multiplication. Journal of Experimental. Psychology: Learning, Memory, & Cognition, 13, 109-123.

Cipolotti, L., & Butterworth, B. (1995). Toward a multiroute model of number processing: impaired number transcoding with preserved calculation skills. Journal of Experimental Psychology: General, 124, 375-390.

Dehaene S. (1992) Varieties of numerical abilities. Cognition, 44, 1-42.

Dehaene, S. & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1, 83 – 120.

Dehaene, S., & Cohen, L. (1997). Cerebral pathways for calculation: Double dissociation between rote verbal and quantities knowledge of arithmetic. Cortex, 33(2), 219–250.

Dehaene, S., Mehler, J. (1992) Cross-Linguistic Regularities in the Frequency of Number Words. Cognition, 43(1) 1-29.

Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487-506.

Fayol, M., & Thevenot, C. (2012). The use of procedural knowledge in simple addition and subtraction problems. Cognition, 123, 392-403.

Galfano, G., Rusconi, E. & Umiltá, C. (2003). Automatic activation of multiplication facts: Evidence from the nodes adjacent to the product. The Quarterly Journal of Experimental Psychology, 56A, 31-61.

García Orza, J., Damas, J., Matas & Rodríguez, J. M. (2009). 2x3 =’ primes naming ‘6’: evidences from unconscious masked priming. Attention,Perception & Psychophysics, 71(3), 471-480.

Geary, D. C., Frensch, P. A., & Wiley, J. G. (1993). Simple and complex mental subtraction: Strategy choice and speed-of-processing differences in younger and older adults. Psychology and Aging, 8, 242-256.

Hecht, S. A. (1999). Individual solution processes while solving addition and multiplication math facts in adults. Memory & Cognition, 27, 1097-1107.

Imbo, I. & Vandierendonck, A. (2008). Effects of problem-size, opera-tion, and working-memory span on simple-arithmetic strategies: Differences between children and adults? Psychological Research, 72, 331-346.

Kirk, E. P., & Ashcraft, M. H. (2001). Telling stories: The perils and promise of using verbal reports to study math strategies. Journal of Experimental Psychology: Learning,Memory, & Cognition, 27, 157-175.

Lara, V., García Orza, J. y Carratalá, P. (2009). Cuando 7+3 parece correcto: resolución automática de las restas en una tarea de verificación. Escritos de Psicología, 2 (3), 35-39.

LeFevre, J. A., Bisanz, J., & Mrkonjic, L. (1988). Cognitive arithmetic: Evidence for obligatory activation of arithmetic facts. Memory & Cognition, 16, 45-53.

LeFevre, J. A., Bisanz, J., Daley, K. E., Buffone, L., Greenham, S. L., & Sadesky, G. S. (1996). Multiple routes to solution of single digit multiplication problems. Journal of Experimental Psychology: General, 125, 284-306.

LeFevre, J. A. DeStefano, D. Penner-Wilger, M. Daley , E. (2006). Selection of procedures in mental subtraction. Canadian Journal of Experimental Psychology, 60(3), 209-220.

Mauro, D. G., LeFevre, J., & Morris, J. (2003). Effects of problem for-mat on division and multiplication performance: Evidence for mediation of division by multiplication. Journal of Experimental Psychology: Learning, Memory, & Cognition, 29, 163-170.

McCloskey, M. (1992). Cognitive mechanisms in numerical processing: Evidence from acquired discalculia. Cognition, 44, 107 - 157.

Metcalfe, A. W. S., & Campbell, J. I. D. (2011). Strategies for simple addition and multiplication: verbal self-reports and the operand recognition paradigm. Journal of Experimental Psychology: Learning, Memory and Cognition, 37, 661-672.

Metcalfe, A. W. S., & Campbell, J. I. D. (2010). Switch costs and the operand recognition paradigm. Psychological Research, 74, 491–498.

Roussel, J. L., Fayol, M., & Barrouillet, P. (2002). From procedural computation to direct retrieval. European Journal of Cognitive Psycholo-gy, 14, 61-104.

Seyler, D. J., Kirk, E. P., & Ashcraft, M. H. (2003). Elementary subtrac-tion. Journal of Experimental Psychology: Learning, Memory, & Cognition, 29, 1339-1352.

Siegler, R. S., & Jenkins, E. (1989). How children discover new strategies. Hills-dale, NJ: Lawrence Erlbaum.

Thevenot, C., Castel, C., Fanget, M., & Fayol, M. (2010). Mental subtrac-tion in high and lower-skilled arithmetic problem solvers: Verbal report vs. operand-recognition paradigms. Journal of Experimental Psychology: Learning, Memory & Cognition, 36, 1242-1255.

Thevenot, C., Fanget, M., & Fayol, M. (2007). Retrieval or non-retrieval strategies in mental addition? An operand-recognition paradigm. Memory & Cognition, 35, 1344–1352.

Thibodeau, M. H., LeFevre, J., & Bisanz, J. (1996). The extension of the interference effect to multiplication. Canadian Journal of Experimental Psychology, 50, 393-396.

Winkelman, J. H., & Schmidt, J. (1974). Associative confusions in mental arithmetic. Journal of Experimental Psychology, 102, 734-736.

Zbrodoff, N. J., & Logan, G. D. (1986). On the autonomy of mental processes: A case study of arithmetic. Journal of Experimental Psychology: General, 115, 118-130.

Zbrodoff, N. J., & Logan, G. D. (2005). What everyone finds: The problem-size effect. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 331-345). New York: Psychology Press.

Zbrodoff, N. J., & Logan, G. D. (1986). On the autonomy of mental processes: A case study of arithmetic. Journal of Experimental Psychology: General, 115, 118-131.

Published
25-04-2015
How to Cite
Estudillo, A. J., Bermudo Romero, E., Casado, N., Prasad Das, J., & Garcia-Orza, J. (2015). Automaticity in subtractions depends on problem-size. Anales de Psicología / Annals of Psychology, 31(2), 697–704. https://doi.org/10.6018/analesps.31.2.173621
Issue
Section
Cognitive Psychology