Asociación de hongos endofíticos en raíces de plantas medicinales exóticas cultivadas en Nilgiris, Western Ghats, India Peninsular

Asociación de hongos de raíz en plantas medicinales exóticas

Autores/as

  • Nagarajan Bharathy Root and Soil Biology Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamilnadu, India.
  • Srinivasan Sowmiya Root and Soil Biology Laboratory, Department of Botany, Bharathiar University, Coimbatore, India
  • Shanmugam Karthik Root and Soil Biology Laboratory, Department of Botany, Bharathiar University, Coimbatore, India
  • Koshila Ravi Ravichandran Bharathiar University, Coimbatore
  • Mayakrishnan Balachandar Root and Soil Biology Laboratory, Department of Botany, Bharathiar University, Coimbatore, India
  • Thangavelu Muthukumar Root and Soil Biology Laboratory, Department of Botany, Bharathiar University, Coimbatore, India
DOI: https://doi.org/10.6018/analesbio.43.16
Palabras clave: Micorrizas arbusculares, hongos endofíticos septados oscuros, tipo intermedio, pelo radicular, morfotipo de esporas.

Resumen

Algunos microbios beneficiosos para el suelo ayudan en el establecimiento y crecimiento de plantas medicinales exóticas. Por lo tanto, evaluamos la presencia y el estado de la asociación de endófitos de raíces [hongos micorrízicos arbusculares (AM) y hongos endofíticos septados oscuros (DSE)] en diez especies de plantas medicinales exóticas cultivadas en Nilgiris de los Ghats occidentales. El alcance de las variables endófitas de hongos y las características del pelo de la raíz difirieron significativamente entre las plantas medicinales. Se identificaron seis morfotipos de esporas de hongos AM en las muestras de suelo. Por lo tanto, este estudio indicó la asociación de plantas medicinales exóticas con hongos nativos AM y DSE que podrían explotarse para promover el crecimiento y aumentar la producción de metabolitos secundarios en estas especies de plantas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ahulu EM, Gollotte A, Gianinazzi-Pearson V & Nonaka M. 2006. Cooccurring plants forming distinct arbuscular mycorrhizal morphologies harbor similar AM fungal species. Mycorrhiza 17: 37–49. https://doi.org/10.1007/s00572-006-0079-0.

Ahvazi M, Khalighi-Sigaroodi F, Charkhchiyan MM, Mojab F, Mozaffarian VA & Zakeri H. 2012. Introduction of medicinal plants species with the most traditional usage in Alamut region. Iranian Journal of Pharmaceutical Research 11(1): 185–194.

Alencar NL, Santoro FR & Albuquerque UP. 2014. What is the role of exotic medicinal plants in local medical systems? A study from the perspective of utilitarian redundancy. Revista Brasileira de Farmacognosia 24(5): 506–515. https://doi.org/10.1016/j.bjp.2014.09.003.

Bauer JT, Koziol L & Bever JD. 2020. Local adaptation of mycorrhizae communities changes plant community composition and increases aboveground productivity. Oecologia 192(3): 735–744. https://doi.org/10.1007/s00442-020-04598-9.

Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ahmed N, Ashraf M & Zhang L. 2019. Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Frontiers in Plant Science 10: 1068. https://doi.org/10.3389/fpls.2019.01068.

Brundrett MC. 2009. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil 320: 37–77. https://doi.org/10.1007/s11104-008-9877-9.

Brundrett MC & Tedersoo L. 2018. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist 220(4): 1108–1115. https://doi.org/10.1111/nph.14976.

Chagnon PL, Bradley RL, Maherali H & Klironomos JN. 2013. A trait-based framework to understand life history of mycorrhizal fungi. Trends in Plant Science 18(9): 484–491. https://doi.org/10.1016/j.tplants.2013.05.001.

Diagne N, Ngom M, Djighaly PI, Fall D, Hocher V & Svistoonoff S. 2020. Roles of arbuscular mycorrhizal fungi on plant growth and performance: Importance in biotic and abiotic stressed regulation. Diversity 12: 370. https://doi.org/10.3390/d12100370.

Dickson S. 2004. The Arum-Paris continuum of mycorrhizal symbioses. New Phytologist 163(1): 187–200. https://doi.org/10.1111/j.1469-8137.2004.01095.x.

Egan CP, Callaway RM, Hart MM, Pither J & Klironomos J. 2017. Phylogenetic structure of arbuscular mycorrhizal fungal communities along an elevation gradient. Mycorrhiza 27(3): 273–282. https://doi.org/10.1007/s00572-016-0752-x.

Farias GC, Nunes KG, Soares MA, de Siqueira KA, Lima WC, Neves ALR, de Lacerda CF & Gomes Filho E. 2020. Dark septate endophytic fungi mitigate the effects of salt stress on cowpea plants. Brazilian Journal of Microbiology 51(1): 243–253. https://doi.org/10.1007/s42770-019-00173-4.

Gucwa-Przepióra E, Chmura D & Sokołowska K. 2016. AM and DSE colonization of invasive plants in urban habitat: a study of Upper Silesia (southern Poland). Journal of Plant Research 129: 603–614. https://doi.org/10.1007/s10265-016-0802-7.

He C, Wang W & Hou J. 2019. Characterization of dark septate endophytic fungi and improve the performance of liquorice under organic residue treatment. Frontiers in Microbiology 10: 1364. https://doi.org/10.3389/fmicb.2019.01364.

Hoysted GA, Jacob AS, Kowal J, Giesemann P, Bidartondo MI, Duckett JG, Gebauer G, Rimington WR, Schornack S, Pressel S & Field KJ. 2019. Mucoromycotina fine root endophyte fungi form nutritional mutualisms with vascular plants. Plant Physiology 181: 565–577. https://doi.org/10.1104/pp.19.00729.

Isobe K, Aizawa E, Iguchi Y & Ishii R. 2007. Distribution of arbuscular mycorrhizal fungi in upland field soil of Japan. 1. Relationship between spore density and the soil environmental factor. Plant Production Science 10(1): 122–128. https://doi.org/10.1626/pps.10.122.

Jackson ML. 1971. Soil Chemical Analysis Prentice Hall of India Pvt. Ltd., New Delhi, India.

Jamiołkowska A, Księżniak A, Hetman B, Kopacki M, Skwaryło-Bednarz B, Gałązka A & Thanoon AH. 2017. Interactions of arbuscular mycorrhizal fungi with plants and soil microflora. Acta Scientiarum Polonorum, Hortorum Cultus 16(5): 89–95. https://doi.org/10.24326/asphc.2017.5.9.

Khanam D, Mau M, Arm S & Hossain T. 2006. Effect of edaphic factors on root colonization and spore population of arbuscular mycorrhizal fungi. Bulletin of the Institute of Tropical Agriculture, Kyushu University 29(1): 97–104. https://doi.org/10.11189/bita.29.97.

Kohout P, Doubková P, Bahram M, Suda J, Tedersoo L, Voříšková J & Sudová R. 2015. Niche partitioning in arbuscular mycorrhizal communities in temperate grasslands: a lesson from adjacent serpentine and nonserpentine habitats. Molecular Ecology 24(8): 1831–1843. https://doi.org/10.1111/mec.13147.

Koske RE & Gemma JN. 1989. A modified procedure for staining roots to detect VA mycorrhizas. Mycological Research 92(4): 486–488. https://doi.org/10.1016/S0953-7562(89)80195-9.

Kumarasamyraja D, Jeganathan NS & Manavalan R. 2012. A review on medicinal plants with potential wound healing activity. International Journal of Pharma Sciences 2(4): 105–115.

Lakshmipathy R, Balakrishna AN & Bagyaraj DJ. 2012. Abundance and diversity of AM fungi across a gradient of land use intensity and their seasonal variations in Niligiri Biosphere of the Western Ghats, India. Journal of Agricultural Science and Technology 14(4): 903–918.

Ma JF, Goto S, Tamai K & Ichii M. 2001. Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiology 127: 1773–1780. https://doi.org/10.1104/pp.010271.

Maherali H (2014). Is there an association between root architecture and mycorrhizal growth response?. New Phytologist 204(1): 192–200. https://doi.org/10.1111/nph.12927.

McGee KM, Eaton WD, Shokralla S & Hajibabaei M. 2019. Determinants of soil bacterial and fungal community composition toward carbon-use efficiency across primary and secondary forests in a Costa Rican conservation area. Microbial Ecology 77: 148–167. https://doi.org/10.1007/s00248-018-1206-0.

Medeiros PMD, Ferreira Júnior WS, Ramos MA, Silva TCD, Ladio AH & Albuquerque UP. 2017. Why do people use exotic plants in their local medical systems? A systematic review based on Brazilian local communities. PLoS One 12 e0185358. https://doi.org/10.1371/journal.pone.0185358.

Muthukumar T, Chinnathambi M & Priyadharsini P. 2016. Root fungal associations in some non-orchidaceous vascular lithophytes. Acta Botanica Brasilica 30(3): 407–421. http://dx.doi.org/10.1590/0102-33062016abb0074.

Muthukumar T, Sathiyadash K & Valarmathi V. 2018. Arbuscular mycorrhizal and dark septate endophyte fungal associations in plants of different vegetation types in Velliangiri hills of Western Ghats, Southern India. Acta Botanica Hungarica 60(1–2): 185–222. https://doi.org/10.1556/034.60.2018.1-2.9.

Muthukumar T, Udaiyan K & Shanmughavel P. 2004. Mycorrhiza in sedges—an overview. Mycorrhiza 14(2): 65–77. http://dx.doi.org/10.1007/s00572-004-0296-3.

Muthuraja R. & Muthukumar T. 2019. Arbuscular mycorrhizal and dark septate endophyte fungal association in cassava (Manihot esculenta crantz) varieties, Southern India. Notulae Scientia Biologicae 11(1): 154–166. https://doi.org/10.15835/nsb11110397.

Nguanchoo V, Wangpakapattanawong P, Balslev H & Inta A. 2019. Exotic plants used by the Hmong in Thailand. Plants 8: 500. https://doi.org/10.3390/plants8110500.

Nishteswar K. 2014. Depleting medicinal plant resources: A threat for survival of Ayurveda. Ayu 35(4): 349–350. https://doi.org/10.4103/0974-8520.158972.

Orchard S, Standish RJ, Dickie IA, Renton M, Walker C, Moot D & Ryan MH. 2017. Fine root endophytes under scrutiny: a review of the literature on arbuscule-producing fungi recently suggested to belong to the Mucoromycotina. Mycorrhiza 27: 619–638. https://doi.org/10.1007/s00572-017-0782-z.

Peterson RL, Wagg C & Pautler M. 2008. Associations between microfungal endophytes and roots: do structural features indicate function?. Botany 86(5): 445–456. https://doi.org/10.1139/B08-016.

Piszczek P, Kuszewska K, Błaszkowski J, Sochacka-Obruśnik A, Stojakowska A & Zubek S. 2019. Associations between root-inhabiting fungi and 40 species of medicinal plants with potential applications in the pharmaceutical and biotechnological industries. Applied Soil Ecology 137: 69–77. https://doi.org/10.1016/j.apsoil.2019.01.018.

Radhika KP. & Rodrigues BF 2010. Arbuscular mycorrhizal fungal diversity in some commonly occurring medicinal plants of Western Ghats, Goa region. Journal of Forestry Research 21: 45–52. https://doi.org/10.1007/s11676-010-0007-1.

Rajkumar HG. Seema HS & Sunil Kumar CP. 2012. Diversity of arbuscular mycorrhizal fungi associated with some medicinal plants in Western Ghats of Karnataka region, India. World Journal of Science and Technology 2(1): 13–20.

Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim YO & Redman RS. 2008. Stress tolerance in plants via habitat-adapted symbiosis. The ISME Journal 2(4): 404–416. https://doi.org/10.1038/ismej.2007.106.

Rouphael Y, Franken P, Schneider C, Schwarz D, Giovannetti M, Agnolucci M, De Pascale S, Bonini P & Colla G. 2015. Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Scientia Horticulturae 196: 91–108. https://doi.org/10.1016/j.scienta.2015.09.002.

Rożek K, Rola K, Błaszkowski J & Zubek S. 2019. Associations of root-inhabiting fungi with herbaceous plant species of temperate forests in relation to soil chemical properties. Science of the Total Environment 649: 1573–1579. https://doi.org/10.1016/j.scitotenv.2018.08.350.

Safari Sinegani AA & Yeganeh ME. 2017. The occurrence of arbuscular mycorrhizal fungi in soil and root of medicinal plants in Bu-Ali Sina garden in Hamadan, Iran. Biological Journal of Microorganism 5(20): 43–59.

Shao, YD, Zhang DJ, Hu XC, Wu QS, Jiang CJ, Xia TJ, Gao XB & Kuča K. 2018. Mycorrhiza-induced changes in root growth and nutrient absorption of tea plants. Plant, Soil and Environment 64(6): 283–289. https://doi.org/10.17221/126/2018-PSE.

Sharma BB & Jha DK. 2012. Arbuscular mycorrhiza and dark septate fungal associations in medicinal and aromatic plants of Guwahati. Journal of Microbiology and Biotechnology Research 2(1): 212–222.

Shi Z, Yin K., Wang F, Mickan BS, Wang X, Zhou W & Li Y. 2019. Alterations of arbuscular mycorrhizal fungal diversity in soil with elevation in tropical forests of China. Diversity 11(10): 181. https://doi.org/10.3390/d11100181.

Silva-Flores P, Bueno CG, Neira J & Palfner G. 2019. Factors affecting arbuscular mycorrhizal fungi spore density in the Chilean Mediterranean-type ecosystem. Journal of Soil Science and Plant Nutrition 19: 42–50. https://doi.org/10.1007/s42729-018-0004-6.

Song J, Chen L, Chen F & Ye J. 2019. Edaphic and host plant factors are linked to the composition of arbuscular mycorrhizal fungal communities in the root zone of endangered Ulmus chenmoui Cheng in China. Ecology and Evolution 9(15): 8900–8910. https://doi.org/10.1002/ece3.5446.

Tedersoo L, Sánchez-Ramírez S, Koljalg U, Bahram M, Döring M, Schigel D, May T, Ryberg M & Abarenkov K. 2018. High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal diversity 90: 135–159. https://doi.org/10.1007/s13225-018-0401-0.

Tominaga T, Miura C, Takeda N, Kanno Y, Takemura Y, Seo M, Yamato M & Kaminaka H. 2020. Gibberellin promotes fungal entry and colonization during Paris-type arbuscular mycorrhizal symbiosis in Eustoma grandiflorum. Plant and Cell Physiology 61(3): 565–575. https://doi.org/10.1093/pcp/pcz222.

Vasisht K, Sharma N & Karan M. 2016. Current perspective in the international trade of medicinal plants material: an update. Current Pharmaceutical Design 22(27): 4288–4336. https://doi.org/10.2174/1381612822666160607070736.

Vergara C, Araujo KEC, Alves LS, de Souza SR, Santos LA, Santa-Catarina C, da Silva K, Pereira GMD, Xavier GR & Zilli JÉ. 2018. Contribution of dark septate fungi to the nutrient uptake and growth of rice plants. Brazilian Journal of Microbiology 49(1): 67–78. https://doi.org/10.1016/j.bjm.2017.04.010.

Vergara C, Araujo KEC, Souza SRD, Schultz N, Saggin Júnior OJ, Sperandio MVL & Zilli JÉ. 2019. Plant-mycorrhizal fungi interaction and response to inoculation with different growth-promoting fungi. Pesquisa Agropecuária Brasileira 54. https://doi.org/10.1590/s1678-3921.pab2019.v54.25140.

Vieira LC, Silva DKAD, Escobar IEC, Silva JMD, Moura IAD, Oehl F & Silva GAD. 2020. Changes in an arbuscular mycorrhizal fungi community along an environmental gradient. Plants 9: 52. https://doi.org/10.3390/plants9010052.

Wang B & Qiu YL. 2006. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16(5): 299 –363. https://doi.org/10.1007/s00572-005-0033-6.

Wang M. & Jiang P. 2015. Colonization and diversity of AM fungi by morphological analysis on medicinal plants in southeast China. The Scientific World Journal 2015: 1–7. https://doi.org/10.1155/2015/753842.

Wu QS, Liu CY, Zhang DJ, Zou YN, He XH & Wu QH. 2016. Mycorrhiza alters the profile of root hairs in trifoliate orange. Mycorrhiza 26(3): 237–247. https://doi.org/10.1007/s00572-015-0666-z.

Yamato M. 2004. Morphological types of arbuscular mycorrhizal fungi in roots of weeds on vacant land. Mycorrhiza 14(2): 127–131. https://doi.org/10.1007/s00572-003-0246-5.

Zhu ZB, Fan JY, Guo QS, Liu ZY & Zhu GS. 2015. The growth and medicinal quality of Epimedium wushanense are improved by an isolate of dark septate fungus. Pharmaceutical Biology 53(9): 1344–1351. https://doi.org/10.3109/13880209.2014.982296.

Zou YN, Zhang DJ, Liu CY & Wu QS. 2019. Relationships between mycorrhizas and root hairs. Pakistan Journal of Botany 51(2): 727–733.

Zubek S & Błaszkowski J. 2009. Medicinal plants as hosts of arbuscular mycorrhizal fungi and dark septate endophytes. Phytochemistry Reviews 8(3): 571–580. https://doi.org/10.1007/s11101-009-9135-7.

Zubek S, Blaszkowski J & Mleczko P. 2011. Arbuscular mycorrhizal and dark septate endophyte associations of medicinal plants. Acta Societatis Botanicorum Poloniae 80(4): 285–292.

Zubek S, Stefanowicz AM, Błaszkowski J, Niklińska M & Seidler-Łożykowska K. 2012. Arbuscular mycorrhizal fungi and soil microbial communities under contrasting fertilization of three medicinal plants. Applied Soil Ecology 59: 106–115. http://dx.doi.org/10.1016/j.apsoil.2012.04.008.

Publicado
13-12-2021
Cómo citar
Bharathy , N. ., Sowmiya, . S., Karthik , S., Ravichandran, K. R., Balachandar, M., & Muthukumar, T. . (2021). Asociación de hongos endofíticos en raíces de plantas medicinales exóticas cultivadas en Nilgiris, Western Ghats, India Peninsular: Asociación de hongos de raíz en plantas medicinales exóticas. Anales de Biología, (43), 161–174. https://doi.org/10.6018/analesbio.43.16
Número
Sección
Artículos