El cadmio afecta a la regeneración de los esquejes en solución nutritiva de la verdura de hoja Talinum portulacifolium
Resumen
Investigamos el efecto de varias concentraciones (0,0-5,0 ppm) de cadmio (Cd) en la capacidad de regeneración; las características morfológicas y la acumulación de Cd en los esquejes de tallo de la verdura de hoja Talinum portulacifolium cultivada en cultivo hidropónico. El Cd retrasó la brotación de los esquejes en un 7%, la callosidad en un 8% y el enraizamiento en un 38%. Las diferentes concentraciones de Cd afectaron significativamente a los pesos fresco y seco de las partes de la planta, excepto las raíces. La acumulación de Cd fue mayor en los tallos que en las hojas (2,22 vs 0,57 ppm). El índice de tolerancia calculado osciló entre el 59% y el 88%. Basándose en las observaciones, se concluyó que el Cd interfiere con la regeneración de los esquejes de tallo de T. portulacifolium
Descargas
Citas
Adefemi OS, Ibigbami OA & Awokunmi EE. 2012. Level of heavy metals in some edible plants collected from selected dumpsites in Ekiti State, Nigeria. Global Advanced Research Journal of Environmental Science and Toxicology1(5): 13-26.
Agarwal K, Sharma A & Talukder G. 1987. Copper toxicity in plant cellular systems. Nucleus 30(3): 131-158.
Alem P. 2010. Unrooted stem cutting physiology; water use and leaf gas exchange of severed stem cuttings. USA: Clemson University. Masters Thesis.
Antosiewicz DM. 1993. Mineral status of dicotyledonous crop plants in relation to their constitutional tolerance to lead. Environmental and Experimental Botany 33(4): 575-589. https://doi.org/10.1016/0098-8472 (93)90032-B
Babayemi JO, Olafimihan OH & Nwude DO. 2017. Assessment of heavy metals in water leaf from various sources in Ota, Nigeria. Journal of Applied Sciences and Environmental Management 21(6): 1163-1168. https://dx.doi.org/10.4314/jasem.v21i6.29
Baryla A, Carrier P, Franck F, Coulomb C, Sahut C & Havaux M. 2001. Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: causes and consequences for photosynthesis and growth. Planta 212(5-6): 696-709. https://doi. org/10.1007/s004250000439
Bruno L, Pacenza M, Forgione I, Lamerton LR, Greco M, Chiappetta A & Bitonti MB. 2017. In Arabidopsis thaliana cadmium impact on the growth of primary root by altering SCR expression and auxin-cytokinin cross-talk. Frontiers in Plant Science 8: 1323. https://doi.org/10.3389/fpls.2017.01323
Castaneda-Ovando A, de Lourdes Pacheco-Hernández M, Páez-Hernández ME, Rodríguez JA & Galán-Vidal CA. 2009. Chemical studies of anthocyanins: A review. Food chemistry 113(4): 859-871. https://doi. org/10.1016/j.foodchem.2008.09.001
Clemens S, Aarts MG, Thomine S, Verbruggen N. 2013. Plant science: the key to preventing slow cadmium poisoning. Trends Plant Science 18(2): 92-99. https://doi.org/10.1016/j.tplants.2012.08.003
Das P, Samantaray S & Rout G. 1997. Studies on cadmium toxicity in plants: a review. Environmental Pollution 98(1): 29-36. https://doi.org/10.1016/S0269-7491(97)00110-3
de Souza GG, Pinheiro AL, Silva JA, Veroneze-Júnior V, Carvalho M, Bertoli AC, Barbosa S & de Souza TC. 2018. Morpho-physiological tolerance mechanisms of Talinum patens to lead. Water Air and Soil Pollution 229:4. https://doi.org/10.1007/s11270-017-3658-0
Dghaim R, Al Khatib S, Rasool H & Ali Khan M. 2015. Determination of heavy metals concentration in traditional herbs commonly consumed in the United Arab Emirates. Journal of Environmental and Public Health. 2015: 1-6. http://dx.doi.org/10.1155/2015/ 9 73878
Dole JM & Gibson JL. 2006. Cutting propagation: a guide to propagating and producing floriculture crops. Batavia, USA: Ball Publishing.
Dushenkov V, Kumar PN, Motto H & Raskin I. 1995. Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environmental Science and Technology 29(5): 1239-1245. https://doi. org/10.1021/es00005a015
Ebong GA, Etuk HS & Dan EU. 2018. Distribution, pollution index and associated health risk of trace metals in waste-impacted soils within Akwa Ibom State, Nigeria. Geosystem Engineering 21(3): 121-34. https://doi.org/10.1080/12269328.2017.1376291
Elobeid M, Göbel C, Feussner I & Polle A. 2011. Cadmium interferes with auxin physiology and lignification in poplar. Journal of Experimental Botany 63(3): 1413-1421. https://doi.org/10.1093/jxb/err384
Emamverdian A, Ding Y, Mokhberdoran F & Xie Y. 2015. Heavy metal stress and some mechanisms of plant defense response. The Scientific World Journal 2015, Article ID 756120, 18 pages. https://doi.org/ 10.1155/2015/756120
Eze MO & Ekanem EO. 2014. Bioaccumulation and mobility of cadmium (Cd), lead (Pb) and zinc (Zn) in green spinach grown on dumpsite soils of different pH levels. Bulletin of Environment, Pharmacology and Life Sciences 4(1): 85-91. https://doi.org/10. 1007/s10661-018-7051-2
FAO/WHO. 2014. General standards for contaminants and toxins in food and feed (CODEX STAN 193-1995). Available in www.fao.org/input/download/ standards/17/CXS_193e_2015.pdf (Accessed 29 April 2019).
Friberg L. 2018. Cadmium in the Environment. Boca Raton: CRC Press.
Friberg LT, Elinder CG, Kjellstrom T & Nordberg GF. 2019. Cadmium and health: A toxicological and epidemiological appraisal: Volume 2: Effects and response. USA: CRC Press.
Girisha ST & Ragavendra VB. 2009. Accumulation of heavy metals in leafy vegetables grown in urban areas by using sewage water and its effect. Archives of Phytopathology and Plant Protection 42(10): 956-959. https://doi.org/10.1080/03235400701543806
Hashem HA. 2014. Cadmium toxicity induces lipid peroxidation and alters cytokinin content and antioxidant enzyme activities in soybean. Botany 92(1): 1-7. https://doi.org/10.1139/cjb-2013-0164
He S, Yang X, He Z & Baligar VC. 2017. Morphological and physiological responses of plants to cadmium toxicity: A review. Pedosphere 27(3): 421-438. https://doi.org/10.1016/S1002-0160(17)60339-4
Henson TM, Cory W & Rutter MT. 2013. Extensive variation in cadmium tolerance and accumulation among populations of Chamaecrista fasciculata. PLoS ONE 8(5): e63200. https://doi.org/10.1371/ journal.pone.0063200
Hernández I, Alegre L, Van Breusegem F & Munné-Bosch S. 2009. How relevant are flavonoids as antioxidants in plants? Trends in Plant Science 14(3): 125-132. https://doi.org/10.1016/j.tplants.2008.12.003
Huang Y, He C, Shen C, Guo J, Mubeen S, Yuan J & Yang Z. 2017. Toxicity of cadmium and its health risks from leafy vegetable consumption. Food and Function 8: 1373-1401. https://doi.org/10.1016/j. tplants.2008.12.003
Jackson AP & Alloway BJ. 2017. The transfer of cadmium from agricultural soils to the human food chain. In Biogeochemistry of trace metals (Adriano DC, ed.). Boca Raton: CRC Press, pp. 121-170.
Jansen PCM. 2004. Talinum portulacifolium (Forssk.) Asch. ex Schweinf. Record from PROTA4U (Grubben GJH & Denton OA, Eds.). PROTA (Plant Resources of Tropical Africa / Ressources végétales de l’Afrique tropicale), Wageningen, Netherlands. Available in http://www.prota4u.org/search.asp (Accessed 29 April 2019).
Khan MA, Khan S, Khan A & Alam M. 2017. Soil contamination with cadmium, consequences and remediation using organic amendments. Science of the Total Environment. 601-602: 1591-605. https://doi. org/10.1016/j.scitotenv.2017.06.030
Kieber JJ & Schaller GE. 2018. Cytokinin signaling in plant development. Development 145. https://doi. org/10.1242/dev.149344
Koleva L, Semerdjieva I, Nikolova A & Vassilev A. 2010. Comparative morphological and histological study on zinc- and cadmium-treated durum wheat plants with similar growth inhibition. General and Applied Plant Physiology 36(1-2): 8-11.
Kubier A, Wilkin RT & Pichler T. 2019. Cadmium in soils and groundwater: A review. Applied Geochemistry 108:104388. https://doi.org/10.1016/j.apgeochem.2 019.104388
Kumar A & Prasad MN. 2015. Lead-induced toxicity and interference in chlorophyll fluorescence in Talinum triangulare grown hydroponically. Photosynthetica 53: 66-71. https://doi.org/10.1007/s11099-015-0091-8
Kumar A & Prasad MNV. 2010. Propagation of Talinum cuneifolium L. (Portulacaceae), an ornamental plant and leafy vegetable, by stem cuttings. Floriculture and Ornamental Biotechnology 4(S1): 68-71.
Kumar A, Prasad MNV & Sytar O. 2012. Lead toxicity, defense strategies and associated indicative biomarkers in Talinum triangulare grown hydroponically. Chemosphere 89(9): 1056-1065. https://doi.org/10. 1016/j.chemosphere.2012.05.070
Lai HY & Cai MC. 2016. Effects of extended growth periods on subcellular distribution, chemical forms, and the translocation of cadmium in Impatiens walleriana. International Journal of Phytoremediation 18(3): 228-234. https://doi.org/10.1080/15226514.2015.10 73 677
Lai HY, Lam CM, Wang WZ & Ji YJ. 2017. Cadmium uptake by cuttings of Impatiens walleriana in response to different cadmium concentrations and growth periods. Bulletin of Environmental Contamination and Toxicology 98(3): 317-322. https://doi.org/10.1007/ s00128-016-1874-8
Langille WM & MacLean KS. 1976. Some essential nutrient elements in forest plants as related to species, plant part, season and location. Plant and Soil 45(1): 17-26. https://doi.org/10.1007/BF00011125
McBride MB, Martinez CE & Kim B. 2016. Zn, Cd, S and trace metal bioaccumulation in willow (Salix spp.) cultivars grown hydroponically. International Journal of Phytoremediation 18(12): 1178-1186. https://doi. org/10.1080/15226514.2016.1189401
Mohanapriya S, Senthilkumar P, Sivakumar S, Dineshkumar M & Subbhuraam V. 2006. Effects of copper sulfate and copper nitrate in aquatic medium on the restoration potential and accumulation of copper in stem cuttings of the terrestrial medicinal plant, Portulaca oleracea Linn. Environmental Monitoring and Assessment 121(1-3): 233-244. https://doi.org/10. 1007/s10661-005-9117-1
Muthukumar T, Sarah J & Dinesh-Babu S. 2018. Zinc influences regeneration of Talinum portulacifolium stem cuttings in nutrient solution. Notulae Scientia Biologicae 10(4): 530-539. https://doi.org/10.15835/ nsb10410 392
Nair NC & Henry AN. 1983. Flora of Tamil Nadu, India (Ser. 1). India: Botanical Survey of India.
Nessa F, Khan SA & Abu Shawish KY. 2016. Lead, cadmium and nickel contents of some medicinal agents. Indian Journal of Pharmaceutical Science 78(1):111-119. http://dx.doi.org/10.4103/0250-474X.180260
Niu ZX, Sun LN, Sun TH & Li YS, Hong W. 2007. Evaluation of phytoextracting cadmium and lead by sunflower, ricinus, alfalfa and mustard in hydroponic culture. Journal of Environmental Sciences 19(8): 961-967. https://doi.org/10.1016/S1001-0742(07)60158-2
Obasi NA, Akubugwo EI, Kalu KM & Ugbogu OC. 2013. Speciation of heavy metals and phyto-accumulation potentials of selected plants on major dumpsites in Umuahia, Abia State, Nigeria. International Journal of Current Biochemistry Research 1(4): 16-28.
Obasi NA, Obasi SE, Akubugwo EI, Elom SO & Alisa CO. 2009. Health risk assessment of selected wild valuable plants species grown around Amaozara and Amaechara aged dumpsite soils in Amasiri, Afikpo North LGA of Ebonyi State, Nigeria. 3rd International Conference on Chemical, Agricultural and Medical Sciences (CAMS-2015) Dec. 10-11, 2015 Singapore, pp 23-27. http://dx.doi.org/10.15242/ IICBE.C1215029
Obasi NA, Obasi SE, Igbolekwu RI, Nkama OJ & Eluu SO. 2015. Health risk assessment of the quality of plants cultivated around Eluogo and Agboogo Ibii aged dumpsites in Ibii, Afikpo North LGA of Ebonyi State, Nigeria. American Journal of Environmental Engineering Science 2(6): 100-108.
Piper CS. 1966. Soil and plant analysis. Bombay, India: Hans Publishers.
Pollard AJ, Powell KD, Harper FA & Smith JAC. 2002. The genetic basis of metal hyperaccumulation in plants. Critical Reviews in Plant Science 21(6): 539-566. https://doi.org/10.1080/0735-260291044359
Rajkumar K, Sivakumar S, Senthilkumar P, Prabha D, Subbhuraam CV & Song YC. 2009. Effects of selected heavy metals (Pb, Cu, Ni and Cd) in the aquatic medium on the restoration potential and accumulation in the stem cuttings of the terrestrial plant, Talinum triangulare Linn. Ecotoxicology 18(7): 952-960. https://doi.org/10.1007/s10646-009-0371-9
Ronzan M, Piacentini D, Fattorini L, Della-Rovere F, Eiche E, Riemann M, . . . Falasca G. 2018. Cadmium and arsenic affect root development in Oryza sativa L. negatively interacting with auxin. Environmental and Experimental Botany 151: 64-75. https://doi.org/10.1016/j.envexpbot.2018.04.008
Sankara-Rao K, Swamy RK, Kumar D, Arun-Singh R & Gopalakrishna-Bhat K. 2019. Flora of Peninsular India. Available in http://flora-peninsula-indica.ces.iisc. ac.in/herbsheet.php?id=8108&cat=7 (Accessed 29 April 2019).
Santos KM & Fisher PR & Argo WR. 2009. Stem versus foliar uptake during propagation of Petunia× hybrida vegetative cuttings. HortScience 44(7): 1974-1977. https://doi.org/10.21273/HORTSCI.44.7.1974
Sekhar CK, Kamala CT, Chary NS & Mukherjee AB. 2007. Arsenic accumulation by Talinum cuneifolium-application for phytoremediation of arsenic contaminated soils of Patancheru, Hyderabad, India. Trace Metal and other Contaminants in the Environment 9: 315-338. https://doi.org/10.1016/S1875-1121(06) 0 9 012-2
Shahid M, Dumat C, Khalid S, Niazi NK & Antunes PMC. 2016. Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system. Reviews of Environmental Contamination and Toxicology 241: 73-137. https://doi.org/10.1007/398_2016_8
Steffens B & Rasmussen A. 2016. The physiology of adventitious roots. Plant Physiology 170(2): 603-617. https://doi.org/10.1104/pp.15.01360
Sun S, Li M, Zuo J, Jiang W, Liu D. 2015. Cadmium effects on mineral accumulation, antioxidant defence system and gas exchange in cucumber. Zemdirbyste-Agriculture 102(2): 193-200. https://doi.org/10.13080/z-a.2015.102.025
Swarna J, Ravindhran R & Lokeswari TS. 2015. Characterization of Talinum triangulare (Jacq.) Willd. germplasm using molecular descriptors. South African Journal of Botany 97: 59-68. http://dx.doi.org/10. 1016/j.sajb.2014.12.012
Thangavel P, Subburam V. 1998. Effect of trace metals on the restoration potential of leaves of the medicinal plant, Portulaca oleracea Linn. Biological Trace Element Research 61(3): 313-321. https://doi.org/10. 1007/BF02789091
Thévenod F & Lee WK. 2013. Toxicology of cadmium and its damage to mammalian organs. Metal Ions in Life Sciences 11: 415-490. http://dx.doi.org/10.1007/978-94-007-5179-8_14
Vysotskaya L, Cherkozyanova A, Veselov S & Kudoyarova G. 2007. Role of Auxins and cytokinins in the development of lateral roots in wheat plants with several roots removed. Russian Journal of Plant Physiology 54(3): 402-406. https://doi.org/10.1134/ S1021443707030168
Waisberg M, Joseph P, Hale B & Beyersmann D. 2003. Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 192(2-3): 95-117. https://doi. org/10.1016/S0300-483X(03)00305-6
Wang W, Wu Y, Akbar S, Jia X, He Z & Tian X. 2016. Effect of heavy metals combined stress on growth and metals accumulation of three Salix species with different cutting position. International Journal of Phytoremediation 18(8): 761-767. https://doi.org/10. 1080/15226514.2015.1131237
Wilkins DA. 1978. The measurement of tolerance to edaphic factors by means of root growth. New Phytologist 136(3): 623-633. https://doi.org/10.1111/j.1469-8137.1978.tb01595.x
Yao X, Ma F, Li Y, Ding X, Zou D, Niu Y, . . . Deng J. 2018. Effect of water cadmium concentration and water level on the growth performance of Salix triandroides cuttings. Environmental Science and Pollution Research 25(8): 8002-8011. https://doi.org/ 10.1007/s11356-017-1158-9
Zacchini M, Pietrini F, Mugnozza GS, Iori V, Pietrosanti L & Massacci A. 2009. Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water, Air, and Soil Pollution 197(1): 23-34. https://doi.org/10.1007/s112 70-008-9788-7
Zha HG, Jiang RF, Zhao FJ, Vooijs R, Schat H, Barker HA & McGrath HP. 2004. Co-segregation analysis of cadmium and zinc accumulation in Thlaspi caerulescens interecotypic crosses. New Phytologist 163(2): 299-312. https://doi.org/10.1111/j.1469-8137.2004. 01113.x
- 04-12-2020 (3)
- 04-12-2020 (2)
- 04-12-2020 (1)
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Las obras que se publican en esta revista están sujetas a los siguientes términos:
1. El Servicio de Publicaciones de la Universidad de Murcia (la editorial) conserva los derechos patrimoniales (copyright) de las obras publicadas, y favorece y permite la reutilización de las mismas bajo la licencia de uso indicada en el punto 2.
2. Las obras se publican en la edición electrónica de la revista bajo una licencia Creative Commons Reconocimiento-NoComercial-SinObraDerivada 3.0 España (texto legal). Se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que: i) se cite la autoría y la fuente original de su publicación (revista, editorial y URL de la obra); ii) no se usen para fines comerciales; iii) se mencione la existencia y especificaciones de esta licencia de uso.
3. Condiciones de auto-archivo. Se permite y se anima a los autores a difundir electrónicamente las versiones pre-print (versión antes de ser evaluada) y/o post-print (versión evaluada y aceptada para su publicación) de sus obras antes de su publicación, ya que favorece su circulación y difusión más temprana y con ello un posible aumento en su citación y alcance entre la comunidad académica. Color RoMEO: verde.