Influencia del hongo arbuscular micorrícico en el crecimiento y arquitectura radicular en suelo tropical modificado con fosforita

Autores/as

  • Perumalsamy Priyadharsini Root and Soil Biology Laboratory, Department of Botany, Bharathiar University, Coimbatore - 641046, Tamil Nadu, India.
  • Thangavelu Muthukumar Root and Soil Biology Laboratory, Department of Botany, Bharathiar University, Coimbatore - 641046, Tamil Nadu, India.
DOI: https://doi.org/10.6018/analesbio.39.22
Palabras clave: Hongo AM, Dependencia micorrizal, Nutrientes, Fósforo, Fosfatasa, Pelos radiculares

Resumen

Ensayamos la influencia del homgo micorrícizo arbuscular (AM) Scutellospora calospora en la estructura, crecimiento, asimilación de nutrientes, actividad fosfatasa y dependencia micorrizal en maíz por adicción de 0-5% de fosforita (RP) en suelos deficientes de fósforo (P). La adicción de RP aumentó significativamente la longitud total de la raíz, número de raíces a diferentes niveles y diámetro de los pelos radiculares de las plantas AM. El hongo AM influyó positivamente el crecimiento del maíz y la asimilación de nutrientes. Las actividades fosfatasa ácida y alcalina fueron mayores en suelos mejorados. Al aumentar las concentraciones RP se redujo no linealmente el porcentaje de colonización del hongo AM. Entonces, la inoculación de hongos AM junto a la mejora de fósfoso proveniente de RP podría sustituir fertilizantes químicos y hacer disponible el P proveniente de RP.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abdel-Fattah GM. 2001. Measurement of the viability of arbuscular-mycorrhizal fungi using three different stains; relation to growth and metabolic activities of soybean plants. Microbiological Research 156: 359−367.

Arcand MM & Schneider KD. 2006. Plant- and microbial-based mechanisms to improve the agronomic effectiveness of phosphate rock: a review. Anais da Academia Brasileira de Ciências 78: 791−807.

Ayoob M, Aziz I & Jite PK. 2011. Interaction effects of arbuscular mycorrhizal fungi and different phosphate levels on growth performance of Catharanthus roseus Linn. Notulae Scientia Biologicae 3: 75−79.

Bagyaraj DJ, Sharma MP & Maiti D. 2015. Phosphorus nutrition of crops through arbuscular mycorrhizal fungi. Current Science 108: 1288-1293.

Baligar VC, Wright RJ & Hern JL. 2005. Enzyme activities in soil influenced by levels of applied sulfur and phosphorus. Communications in Soil Science and Plant Analysis 36: 1727−1735.

Barea JM & Richardson AE. 2015. Phosphate mobilisation by soil microorganisms. In: Principles of Plant-Microbe Interactions (Lugtenberg B, ed.). Springer International Publishing, Switzerland, pp. 225-234.

Berta G, Sgorbati S, Solar V, Fuscone A, Trotta A, Citerio A, Bottone MG, Sparvoli E & Scannerini S. 1990. Variation in chromatin structure in host cell nuclei of vesicular arbuscular mycorrhizal. New Phytologist 114: 199−205.

Bethlenfalvay GJ, Bayre HG & Pacovsky S. 1983. Parasitic and mutualistic associations between a mycorrhizal fungus and soybean: the effect of phosphorus on host plant endophyte interactions. Physiologia Plantarum 57: 543−548.

Cardoso Filho JA, Lemos EEP, Santos TMC, Caetano LC & Nogueira MA. 2008. Mycorrhizal dependency of mangaba tree under increasing phosphorus levels. Pesquisa Agropecuária Brasileira 43: 887-892.

Cavagnaro TR, Smith FA, Ayling SM & Smith SE. 2003. Growth and phosphorus nutrition of a Paris-type arbuscular mycorrhizal symbiosis. New Phytologist 157: 127-134.

Chandra Gandhi K, Priyadharsini P & Muthukumar T. 2017. Potassium fertilization influences indigenous arbuscular mycorrhizal formation and function in a tropical Alfisol. Communications in Soil Science and Plant Analysis 48: 524-538.

Costa NL, Townsend CR, Magalhães JA, Paulino VT, Rodrigues ANA, Nascimento LES & Rodrigues MJA. 2015. Response of Andropogon gayanus cv. Planaltina to arbuscular mycorrhizal inoculation and rock phosphate fertilization. Pubvet 9: 405−408.

Dickson S, Smith SE & Smith FA. 1999. Characterization of two arbuscular mycorrhizal fungi in symbiosis with Allium porrum: inflow and flux of phosphate across the symbiotic interface. New Phytologist 144: 173−181.

Dreyer B, Honrubia M & Morte A. 2014. How root structure defines the arbuscular mycorrhizal symbiosis and what we can learn from it? In: Root Engineering. Soil Biology (Morte A & Varma A, eds.). Springer, Berlin, Heidelberg, pp. 145-169.

Feldmann F & Idczak E. 1992. Inoculum production of vesicular-arbuscular mycorrhizal fungi for use in tropical nurseries. In: Methods in Microbiology (Norris JR, Read DJ & Varma AK, eds.). Academic Press, London, pp. 799−817.

Frey B & Schüepp H. 1993. Acquisition of nitrogen by external hyphae of arbuscular-mycorrhizal fungi associated with Zea mays L. New Phytologist 124: 221−230.

Hochholdinger F & Tuberosa R. 2009. Genetic and genomic dissection of maize root development and architecture. Current Opinions in Plant Biology 12: 172-177.

Jackson ML. 1971. Soil Chemical Analysis. New Delhi, India: Prentice-Hall.

Kaeppler SM, Parke JL, Mueller SM, Senior L, Stuber C & Tracy WF. 2000. Variation among maize inbred lines and detection of quantitative trait loci for growth and low phosphorus and responsiveness to arbuscular mycorrhizal fungi. Crop Science 40: 358−364.

Kaldorf M & Müller LJ. 2000. AM fungi affect the root morphology of maize by increasing indole-3-butyric acid biosynthesis. Physiologia Plantarum 109: 58−67.

Khade SW, Rodrigues BF & Sharma PK. 2010. Arbuscular mycorrhizal status and root phosphatase activities in vegetative Carica papaya L. varieties. Acta Physiologia Plantarum 32: 565−574.

Khalil S, Lognachan TE & Tabatabai MA. 1994. Mycorrhizal dependency and nutrient uptake by improved and unimproved corn and soybean cultivars. Agronomy Journal 86: 949−958.

Kojima T, Hayatsu M & Saito M. 1998. Intraradical hyphae phosphatase of the arbuscular mycorrhizal fungus, Gigaspora margarita. Biology and Fertility of Soils 26: 331−335.

Lindsay WL & Norvell WA. 1978. Development of DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal 42: 421−428.

Maherali H. 2014. Is there an association between root architecture and mycorrhizal growth response? New Phytologist 204: 192-200.

McGonigle TP, Miller MH, Evans DG, Fairchild GL & Swan JA. 1990. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytologist 115: 495−501.

Muthukumar T & Prakash S. 2009. Arbuscular myco­rrhizal morphology in crops and associated weeds in tropical agro-ecosystems. Mycoscience 50: 233-239.

Muthukumar T & Tamilselvi V. 2010. Occurrence and morphology of endorhizal fungi in crop species. Tropical and Subtropical Agroecosystems 12: 593-604.

Muthukumar T, Udaiyan K & Rajeshkannan V. 2001. Res­ponse of neem (Azadirachta indica A. Juss) to indigenous arbuscular mycorrhizal fungi, phosphate-solubilizing and asymbiotic nitrogen-fixing bacteria under tropical nursery conditions. Biology and Fertility of Soils 34: 417-426.

Nakhro N & Dkhar MS. 2010. Impact of organic and inorganic fertilizers on microbial populations and biomass carbon in paddy field soil. Journal of Agronomy 9: 102-110.

Ndungu-Magiroi KW, Waswa B, Bationo A, Okalebo JR, Othieno C, Herrmann L & Lesueur D. 2015. Minjingu phosphate rock applications increase the population of phosphate solubilising microorganisms with a positive impact on crop yields in a Kenyan Ferralsol. Nutrient Cycling in Agroecosystems 102: 91-99.

Newman EI. 1966. A method of estimating the total length of root in a sample. Journal of Applied Ecology 3: 139−145.

Niu YF, Chai RS, Jin GL, Wang H, Tang CX & Zhang YS. 2012. Responses of root architecture development to low phosphorus availability: a review. Annals of Botany 112: 391−408.

Oliveira Júnior JQ, Jesus EC, Pereira MG, Camara R, Fonseca Júnior AM & Sousa ACO. 2017. Dependency and response of Apuleia leiocarpa to inoculation with different species of arbuscular mycorrhizal fungi. Rev Bras Cienc Solo. 2017;41:e0160174. https://doi.org/10.1590/18069657rbcs20160174

Plenchette C, Fortin JA & Furlan V. 1983. Growth res­ponses on several plant species to mycorrhizae in a soil of moderate P fertility. I. Mycorrhizal dependency under field conditions. Plant and Soil 70: 199−209.

Raisei F & Ghollarata M. 2006. Interactions between phosphorus availability and an AM fungus (Glomus intraradices) and their effects on soil microbial respiration, biomass and enzyme activities in a calcareous soil. Pedobiologia 50: 413−425.

Ramirez R, Mendoza B & Lizaso JI. 2009. Mycorrhiza effect on maize P uptake from phosphate rock and superphosphate. Communications in Soil Science and Plant Analysis 40: 2058−2071.

Sadasivam S & Manickam A. 1992. Biochemical Methods for Agricultural Sciences. New Delhi, India: Wi­lley Eastern Limited.

Smith SE & Read DJ. 2008. Mycorrhizal Symbiosis. 3rd edition. San Diego, USA: Academic Press.

Sorenson JN, Larsen J & Jakobsen I. 2005. Mycorrhiza formation and nutrient concentration in leeks (Allium porrum) in relation to previous crop and cover crop management on high P soils. Plant and Soil 273: 101−114.

Takács T, Osztoics E, Csathó P, Csillag J, Rajkai‐Végh K, Magyar M & Lukács A. 2006. Comparative effects of rock phosphates on arbuscular mycorrhizal colonization of Trifolium pratense L. Communications in Soil Science and Plant Analysis 37: 2779-2790.

Tawaraya K. 2003. Arbuscular mycorrhizal dependency of different plant species and cultivars. Soil Science and Plant Nutrition 49: 655-668

Wahid F, Sharif M, Steinkellner S, Khan MA, Marwat KB & Khan SA. 2016. Inoculation of arbuscular myco­rrhizal fungi and phosphate solubilizing bacteria in the presence of rock phosphate improves phosphorus uptake and growth of maize. Pakistan Journal of Botany 48: 739−747.

Wang C, White PJ & Li C. 2017. Colonization and community structure of arbuscular mycorrhizal fungi in maize roots at different depths in the soil profile res­pond differently to phosphorus inputs on a long-term experimental site. Mycorrhiza 27: 369-381.

Zangaro W, Nishidate FR, Vandresen J, Andrade G & Nogueira MA. 2007. Root mycorrhizal colonization and plant responsiveness are related to root plasti­city, soil fertility and successional status of native woody species in Southern Brazil. Journal of Tropical Ecology 23: 53-62.

Publicado
13-12-2017
Cómo citar
Priyadharsini, P., & Muthukumar, T. (2017). Influencia del hongo arbuscular micorrícico en el crecimiento y arquitectura radicular en suelo tropical modificado con fosforita. Anales de Biología, (39), 211–222. https://doi.org/10.6018/analesbio.39.22
Número
Sección
Artículos