Consumos de oxígeno excepcionales, valores y relaciones: Un análisis desde la Fisiología del Ejercicio

Autores/as

  • Cristian Cofré‐Bolados Escuela de Ciencias de la Actividad Física, el Deporte y la Salud, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Chile.
  • Félix Vidal Diaz Escuela de Educación, Magister en Evaluación y Planificación del Entrenamiento Deportivo, Universidad Viña del Mar, Chile.
  • Tomás Herrera-Valenzuela Escuela de Ciencias de la Actividad Física, el Deporte y la Salud, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Chile.
  • Claudio Farias-Valenzuela Escuela de Ciencias de la Actividad Física, Universidad de Las Américas, Santiago 9170022, Chile.
  • Alexis Espinoza-Salinas Escuela de Kinesiología, Universidad Santo Tomas, Santiago, Chile.
  • Dilan Galeano-Rojas Facultad de Ciencias de la Educación, Universidad de Granada, España.
DOI: https://doi.org/10.6018/sportk.634691
Palabras clave: Fitness Cardiorrespiratorio, Ventilación Máxima, Pulso de Oxígeno Máximo

Resumen

El consumo máximo de oxígeno (VO2max) ha representado una referencia fundamental a la hora de medir el fitness cardiorrespiratorio en deportes. El objetivo de este trabajo fue presentar resultados de pruebas de ergometría con análisis de gases en deportistas que superaron los 70 ml/kg/min en VO2max, se analizaron las correlaciones entre el VO2max y parámetros metabólicos, cardiovasculares y respiratorios. El estudio fue descriptivo correlacional, y participaron 27 deportistas masculinos. Se aplicó la prueba de r Pearson para determinar la correlación entre las variables. En el análisis de resultado se determinaron correlaciones: pequeña entre Edad y VO2max (r = -0,238; p = 0,24); grande entre VO2max vs VO2 VT1 (r = 0,741; p < 0,001); VO2max vs VO2 VT2 (r = 0,808; p < 0,001); y VO2 VT1 vs VO2 VT2 (r = 0,783; p < 0,001). Media entre VO2max y FC (r = 0,340; p = 0,09); grande entre VO2max absoluto y VO2/FCmax (r = 0,840; p < 0,001); pequeña entre VO2max y VE (r = 0,214; p = 0,30); pequeña entre VO2max y FR (r = -0,184; p = 0,37); pequeña entre VE y RR% (r = -0,281; p = 0,164). Se presentaron correlaciones grandes entre el VO2max y umbrales ventilatorios, también existió correlación grande entre el VO2max absoluto y el pulso de oxígeno, con correlaciones pequeñas e inexistentes entre el VO2max y los parámetros ventilatorios.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Allen, W. K., Seals, D. R., Hurley, B. F., Ehsani, A. A., & Hagberg, J. M. (1985). Lactate threshold and distance-running performance in young and older endurance athletes. Journal of Applied Physiology, 58(4), 1281-1284.

Balady, G. J., Arena, R., Sietsema, K., Myers, J., Coke, L., Fletcher, G. F., Forman, D., Franklin, B., Guazzi, M., Gulati, M., Keteyian, S. J., Lavie, C. J., Macko, R., Mancini, D., Milani, R. V., American Heart Association Exercise, C. R., Prevention Committee of the Council on Clinical, C., Council on, E., Prevention, . . . Outcomes, R. (2010). Clinician’s Guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation, 122(2), 191-225. https://doi.org/10.1161/CIR.0b013e3181e52e69

Barbier, J., Lebiller, E., Ville, N., Rannou-Bekono, F., & Carré, F. (2006). Relationships betweensports-specific characteristics of athlete’s heart and maximal oxygen uptake. European Journal of Cardiovascular Prevention and Rehabilitation, 13(1), 115-121. https://doi.org/10.1097/01.hjr.0000188243.46664.4c

Beltz, N. M., Gibson, A. L., Janot, J. M., Kravitz, L., Mermier, C. M., & Dalleck, L. C. (2016). Graded exercise testing protocols for the determination of VO2max: historical perspectives, progress, and future considerations. Journal of Sports Medicine, 2016(1), 1-12. https://doi.org/10.1155/2016/3968393

Bishop, D., Jenkins, D. G., & Mackinnon, L. T. (1998). The relationship between plasma lactate parameters, Wpeak and 1-h cycling performance in women. Medicine and Science in Sports and Exercise, 30(8), 1270-1275. https://doi.org/10.1097/00005768-199808000-00014

Bozzini, B., Pellegrino, J., Walker, A., McFadden, B., Poyssick, A., & Arent, S. (2020). Running economy and its correlation to performance and fitness variables in recreationally-trained distance runners. Comparative Exercise Physiology, 16(2), 107-112.

Busse, M., Maassen, N., & Konrad, H. (1991). Relation between plasma K+ and ventilation during incremental exercise after glycogen depletion and repletion in man. The Journal of physiology, 443(1), 469-476.

Buttar, K. K., Saboo, N., & Kacker, S. (2019). A review: Maximal oxygen uptake (VO2 max) and its estimation methods. International Journal of Physical Education, Sports, and Health, 6(6), 24-32.

Cofre-Bolados, C., Ferrari, G., Valdivia-Moral, P., Vidal-Díaz, F., Ramírez-Vélez, R., & Izquierdo-Redin, M. (2022). Sub Maximal Ergospirometry Parameters in Untrained Non-Frail Octogenarian Subjects. Medicina, 58(3), 1-10.

Coyle, E. F. (1995). Substrate utilization during exercise in active people. The American Journal of Clinical Nutrition, 61(4), 968-979. https://doi.org/10.1093/ajcn/61.4.968S

Davies, R. C., Rowlands, A. V., Poole, D. C., Jones, A. M., & Eston, R. G. (2011). Eccentric exercise-induced muscle damage dissociates the lactate and gas exchange thresholds. Journal of Sports Sciences, 29(2), 181-189.

Edwards, A., Clark, N., & Macfadyen, A. (2003). Lactate and ventilatory thresholds reflect the training status of professional soccer players where maximum aerobic power is unchanged. Journal of Sports Science & Medicine, 2(1), 23-29.

Galán-Rioja, M. Á., González-Mohíno, F., Poole, D. C., & González-Ravé, J. M. (2020). Relative Proximity of Critical Power and Metabolic/Ventilatory Thresholds: Systematic Review and Meta-Analysis. Sports Medicine, 50(10), 1771–1783. https://doi.org/10.1007/s40279-020-01314-8

Goss-Sampson, M. A., & Meneses, J. (2019). Análisis estadístico con JASP: Una guía para estudiantes. Open University of Catalonia.

Guazzi, M., Adams, V., Conraads, V., Halle, M., Mezzani, A., Vanhees, L., Arena, R., Fletcher, G. F., Forman, D. E., & Kitzman, D. W. (2012). Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Circulation, 126(18), 2261- 2274.

Herdy, A. H., & Uhlendorf, D. (2011). Reference values for cardiopulmonary exercise testing forsedentary and active men and women. Arquivos Brasileiros de Cardiologia, 96, 54-59.

Hermansen, L. (1971). Lactate production during exercise. Muscle Metabolism During Exercise: Proceedings of a Karolinska Institutet Symposium held in Stockholm. Sports Medicine, 29, 373-386.

Jones, A. M., Kirby, B. S., Clark, I. E., Rice, H. M., Fulkerson, E., Wylie, L. J., Wilkerson, D. P., Vanhatalo, A., & Wilkins, B. W. (2021). Physiological demands of running at 2-hour marathon race pace. Journal of Applied Physiology, 130(2), 369-379. https://doi.org/10.1152/japplphysiol.00647.2020

Kostis, J. B., Moreyra, A., Amendo, M., Di Pietro, J., Cosgrove, N., & Kuo, P. (1982). The effect of age on heart rate in subjects free of heart disease. Studies by ambulatory electrocardiography and maximal exercise stress test. Circulation, 65(1), 141-145. https://doi.org/10.1161/01.cir.65.1.141

La Gerche, A., Burns, A. T., Taylor, A. J., MacIsaac, A. I., Heidbüchel, H., & Prior, D. L. (2012). Maximal oxygen consumption is best predicted by measures of cardiac size rather than function in healthy adults. European Journal of Applied Physiology, 112, 2139-2147. https://doi.org/10.1007/s00421-011-2184-9

Laukkanen, J. A., Araújo, C. G. S., Kurl, S., Khan, H., Jae, S. Y., Guazzi, M., & Kunutsor, S. K. (2018). Relative peak exercise oxygen pulse is related to sudden cardiac death, cardiovascular and all-cause mortality in middle-aged men. European Journal of Preventive Cardiology, 25(7), 772-782. https://doi.org/10.1177/2047487318761679

López Chicharro, J., Vicente Campos, D., & Cancino López, J. (2013). Fisiología del entrenamiento aeróbico: una visión integrada. Editorial Médica Panamericana.

Lucia, A., Esteve-Lanao, J., Olivan, J., Gómez-Gallego, F., San Juan, A. F., Santiago, C., Pérez, M. Chamorro-Vina, C., & Foster, C. (2006). Physiological characteristics of the best Eritrean runners—exceptional running economy. Applied Physiology, Nutrition, and Metabolism, 31(5), 530-540. https://doi.org/10.1139/h06-029

Lucia, A., Hoyos, J., Pérez, M., Santalla, A., & Chicharro, J. L. (2002). Inverse relationshipbetween VO2max and economy/efficiency in world-class cyclists. Medicine & Science in Sports & Exercise, 34(12), 2079-2084. https://doi.org/10.1249/01.MSS.0000039306.92778.DF

Luks, A. M., Glenny, R. W., & Robertson, H. T. (2013). Introduction to cardiopulmonary exercise testing. Springer.

Mezzani, A. (2017). Cardiopulmonary exercise testing: basics of methodology and measurements. Annals of the American Thoracic Society, 14, 3-11. https://doi.org/10.1513/AnnalsATS.201612-997FR

Mezzani, A., Hamm, L. F., Jones, A. M., McBride, P. E., Moholdt, T., Stone, J. A., Urhausen, A., & Williams, M. A. (2013). Aerobic exercise intensity assessment and prescription in cardiac rehabilitation: a joint position statement of the European Association for Cardiovascular Prevention and Rehabilitation, the American Association of Cardiovascular and Pulmonary Rehabilitation and the Canadian Association of Cardiac Rehabilitation. European Journal of Preventive Cardiology, 20(3), 442-467. https://doi.org/10.1177/2047487312460484

Millet, G. P., Vleck, V. E., & Bentley, D. J. (2009). Physiological differences between cycling and running lessons from triathletes. Sports Medicine, 39, 179-206. https://doi.org/10.2165/00007256-200939030-00002

Miyamoto‐Mikami, E., Zempo, H., Fuku, N., Kikuchi, N., Miyachi, M., & Murakami, H. (2018). Heritability estimates of endurance‐related phenotypes: A systematic review and meta‐analysis. Scandinavian Journal of Medicine & Science in Sports, 28(3), 834-845. https://doi.org/10.1111/sms.12958

Mooses, M., & Hackney, A. C. (2017). Anthropometrics and body composition in East African runners: potential impact on performance. International Journal of Sports Physiology and Performance, 12(4), 422-430. https://doi.org/10.1123/ijspp.2016-0408

Myers, J., Arena, R., Cahalin, L. P., Labate, V., & Guazzi, M. (2015). Cardiopulmonary exercise testing in heart failure. Current Problems in Cardiology, 40(8), 322-372. https://doi.org/10.1016/j.cpcardiol.2015.01.009

Nicolò, A., Bazzucchi, I., Felici, F., Patrizio, F., & Sacchetti, M. (2015). Mechanical and electromyographic responses during the 3-min all-out test in competitive cyclists. Journal of Electromyography and Kinesiology, 25(6), 907-913. https://doi.org/10.1016/j.jelekin.2015.08.006

Opondo, M. A., Sarma, S., & Levine, B. D. (2015). The cardiovascular physiology of sports and exercise. Clinics in Sports Medicine, 34(3), 391-404. https://doi.org/10.1016/j.csm.2015.03.004

Paavolainen, L., Häkkinen, K., Hämäläinen, I., Nummela, A., & Rusko, H. (1999). Explosive- strength training improves 5-km running time by improving running economy and muscle power. Journal of Applied Physiology, 86(5), 1527-1533. https://doi.org/10.1152/jappl.1999.86.5.1527

Pérez, J. P., Cruz, P. O., Chávez, Y. F., & Mendoza, J. L. (2000). Pulso máximo de oxígeno en atletas mexicanos de alto rendimiento. Revista del Instituto Nacional de Enfermedades Respiratorias, 13(2), 73-84.

Petek, B. J., Gustus, S. K., & Wasfy, M. M. (2021). Cardiopulmonary Exercise Testing in Athletes: Expect the Unexpected. Current Treatment Options in Cardiovascular Medicine, 23(7), 1-49. https://doi.org/10.1007/s11936-021-00928

Petek, B. J., Tso, J. V., Churchill, T. W., Guseh, J. S., Loomer, G., DiCarli, M., Lewis, G. D., Weiner, R. B., Kim, J. H., & Wasfy, M. M. (2022). Normative cardiopulmonary exercise data for endurance athletes: the Cardiopulmonary Health and Endurance Exercise Registry (CHEER). European Journal of Preventive Cardiology, 29(3), 536-544.

Poole, D. C., Rossiter, H. B., Brooks, G. A., & Gladden, L. B. (2021). The anaerobic threshold: 50+ years of controversy. Journal of Physiology, 599(3), 737-767. https://doi.org/10.1113/JP279963

Robergs, R. A., & Landwehr, R. (2002). The surprising history of the "HRmax=220-age" equation. Journal of Exercise Physiology Online, 5(2), 1-10.

Powers, S. K., Dodd, S., & Garner, R. (1984). Precision of ventilatory and gas exchange alterations as a predictor of the anaerobic threshold. European Journal of Applied Physiology and Occupational Physiology, 52(2), 173–177. https://doi.org/10.1007/BF00433388

Rønnestad, B. R., Hansen, J., Stensløkken, L., Joyner, M. J., & Lundby, C. (2019). Case studies in physiology: temporal changes in determinants of aerobic performance in individual going from alpine skier to world junior champion time trial cyclist. Journal of Applied Physiology, 127(2), 306-311. https://doi.org/10.1152/japplphysiol.00798.2018

Salazar Martínez, J. L., & Jiménez Trujillo, J. O. (2018). Evaluación del consumo máximo de oxígeno (VO2max) y el porcentaje de grasa en futbolistas jóvenes. VIREF Revista De Educación Física, 7(1), 50–86.

Sarma, S., & Levine, B. D. (2016). Beyond the Bruce Protocol: Advanced Exercise Testing for the Sports Cardiologist. Cardiology Clinics, 34(4), 603-608. https://doi.org/10.1016/j.ccl.2016.06.009

Segales, D., Cofre-Bolados, C., Tuesta, M., & Farias-Valenzuela, C. (2023). Maximum oxygen consumption and muscle efficiency in non-professional youth and professional adult soccer players. SPORT TK-Euro-American Journal of Sports Sciences, 12, 1-7. https://doi.org/10.6018/sportk.588691

Segizbaeva, M. O., & Aleksandrova, N. P. (2021). Respiratory Muscle Strength and Ventilatory Function Outcome: Differences Between Trained Athletes and Healthy Untrained Persons. Advances in Experimental Medicine and Biology, 1289, 89–97. https://doi.org/10.1007/5584_2020_554

Sharma, S., Merghani, A., & Mont, L. (2015). Exercise and the heart: the good, the bad, and the ugly. European Heart Journal, 36(23), 1445-1453.

Sietsema, K. E. S., William, W., Sue, D. Y., & Ward, J. (2020). Wasserman & Whipp’s principles of exercise testing and interpretation (6th ed.). Lippincott Williams & Wilkins.

Silva, C. G. D. S. E., Castro, C. L. B. D., Franca, J. F., Bottino, A., Myers, J., & Araújo, C. G. S. D. (2018). Cardiorespiratory Optimal Point in Professional Soccer Players: A Novel Submaximal Variable during Exercise. International Journal of Cardiovascular Sciences, 14, 1-13. https://doi.org/10.5935/2359-4802.20180030

Sjodin, B., & Svedenhag, J. (1985). Applied physiology of marathon running. Sports Medicine, 2, 83-99.

Støren, Ø. (2009). Running and cycling economy in athletes: Determining factors, training interventions, and testing [Doctoral thesis, Norwegian University of Science and Technology].

Suchomel, T. J., Nimphius, S., & Stone, M. H. (2016). The importance of muscular strength in athletic performance. Sports Medicine, 46, 1419-1449.

Sue, D. Y., & Hansen, J. E. (1984). Normal values in adults during exercise testing. Clinics in Chest Medicine, 5(1), 89-98.

Tønnessen, E., Haugen, T. A., Hem, E., Leirstein, S., & Seiler, S. (2015). Maximal aerobic capacity in the winter-Olympics endurance disciplines: Olympic-medal benchmarks for the time period 1990–2013. International Journal of Sports Physiology and Performance, 10(7), 835-839.

Tucker, R., Dugas, J., & Fitzgerald, M. (2009). Runner’s World the Runner’s Body: How the Latest Exercise Science Can Help You Run Stronger, Longer, and Faster. Rodale Books.

Yeh, M. P., Gardner, R. M., Adams, T. D., Yanowitz, F. G., & Crapo, R.O. (1983). Anaerobic threshold: Problems of determination and validation. Journal of Applied Physiology, 55, 1178-1186.

Zinner, C., Sperlich, B., Wahl, P., & Mester, J. (2015). Classification of selected cardiopulmonary variables of elite athletes of different age, gender, and disciplines during incremental exercise testing. SpringerPlus, 4, 1-9. https://doi.org/10.1186/s40064-015-1341-8

Publicado
31-10-2024
Cómo citar
Cofré‐Bolados, C., Vidal Diaz, F., Herrera-Valenzuela, T., Farias-Valenzuela, C., Espinoza-Salinas, A., & Galeano-Rojas, D. (2024). Consumos de oxígeno excepcionales, valores y relaciones: Un análisis desde la Fisiología del Ejercicio. SPORT TK-Revista EuroAmericana de Ciencias del Deporte, 13, 10. https://doi.org/10.6018/sportk.634691
Número
Sección
Artículos