Un análisis de los niveles de hemoglobina y el porcentaje de grasa corporal sobre la potencia de las piernas en atletas de voleibol

Autores/as

  • Fauzi Facultad de Ciencias de la Salud y del Deporte, Universidad Estatal de Yogyakarta, Indonesia.
  • Riky Dwi Handaka Facultad de Educación Vocacional, Universidad Estatal de Yogyakarta, Indonesia.
  • Nur Cholis Majid Facultad de Ciencias de la Salud y del Deporte, Universidad Estatal de Yogyakarta, Indonesia.
  • Yulvia Miftachurochmah Facultad Vocacional, Universidad Estatal de Yogyakarta, Indonesia. https://orcid.org/0000-0002-2690-6762
DOI: https://doi.org/10.6018/sportk.605591
Palabras clave: Hemoglobina, Grasa Corporal, Potencia de Pierna, Voleibol, Atletas

Resumen

Este estudio tuvo como objetivo determinar la posible relación entre el porcentaje de grasa y los niveles de hemoglobina con los niveles de potencia de las piernas. Se empleó un diseño observacional analítico con enfoque transversal. La técnica de muestreo aplicada fue muestreo intencional, estudiando una muestra de 24 atletas masculinos de voleibol menores de 22 años. La hemoglobina se evaluó mediante el método de cianmetemoglobina. El porcentaje de grasa corporal se midió mediante Análisis de Impedancia Bioeléctrica con el Omron Karada Scan HBF-358, mientras que la potencia de las piernas se evaluó mediante el test de salto vertical. Los resultados indicaron una fuerte relación negativa entre el porcentaje de grasa corporal y la potencia de las piernas (p=0,002; r=-0,610), y una fuerte relación positiva entre los niveles de hemoglobina y la potencia de las piernas (p=0,001; r=0,613). El estudio demostró que un mayor porcentaje de grasa corporal se asocia con niveles de potencia elevados. Por el contrario, las concentraciones elevadas de hemoglobina también se relacionan positivamente con la potencia, lo que indica que tanto la capacidad de transporte de oxígeno como la composición corporal pueden influir en el rendimiento muscular.

Descargas

Los datos de descargas todavía no están disponibles.
Metrics
Vistas/Descargas
  • Resumen
    106
  • PDF
    73

Citas

Bachero-Mena, B., Pareja-Blanco, F., & González-Badillo, J. J. (2017). Enhanced strength and sprint levels, and changes in blood parameters during a complete athletics season in 800 m high-level athletes. Frontiers in Physiology, 8, 1-10. https://doi.org/10.3389/fphys.2017.00637

Bekris, E., Gioldasis, A., Gissis, I., Anagnostakos, K., & Eleftherios, M. (2015). From preparation to competitive period in soccer: Hematological changes. Sport Science Review, 24(1–2), 103–114.

Ben Mansour, G., Kacem, A., Ishak, M., Grélot, L., & Ftaiti, F. (2021). The effect of body composition on strength and power in male and female students. BMC Sports Science, Medicine and Rehabilitation, 13(1), 1–11. https://doi.org/10.1186/s13102-021-00376-z

Benelguemar, H., Bouabdellah, S., & Mouıssı, F. (2020). The kinematical analysis of blocking skill in volleyball and their relationships with the explosive force of lower limbs. International Journal of Sport Exercise and Training Sciences, 6(2), 73-79. https://doi.org/10.18826/useeabd.731462

Bompa, T. O., & Buzzichelli, C. (2019). Periodization: theory and methodology of training. Human kinetics.

Bridge, C. A., Ferreira da Silva Santos, J., Chaabène, H., Pieter, W., & Franchini, E. (2014). Physical and physiological profiles of taekwondo athletes. Sports Medicine, 44(6), 713–733. https://doi.org/10.1007/s40279-014-0159-9

Cai, G., Qiu, J., Chen, S., Pan, Q., Shen, X., & Kang, J. (2019). Hematological, Hormonal and Fitness Indices in Youth Swimmers: Gender-Related Comparisons. Journal of Human Kinetics, 70, 69–80. https://doi.org/10.2478/hukin-2019-0027

Coutinho, L. A., Porto, C. P., & Pierucci, A. P. (2016). Critical evaluation of food intake and energy balance in young modern pentathlon athletes: a cross-sectional study. Journal of the International Society of Sports Nutrition, 13(1), 1-8. https://doi.org/10.1186/s12970-016-0127-x

Coutinho, P., Mesquita, I., Davids, K., Fonseca, A. M., & Côté, J. (2016). How structured and unstructured sport activities aid the development of expertise in volleyball players. Psychology of Sport and Exercise, 25, 51–59. https://doi.org/10.1016/j.psychsport.2016.04.004

Damian, M.-T., Vulturar, R., Login, C. C., Damian, L., Chis, A., & Bojan, A. (2021). Anemia in sports: a narrative review. Life, 11(9), 1-12.

Domenica Cappellini, M., & Motta, I. (2015). Anemia in Clinical Practice-Definition and Classification: Does Hemoglobin Change With Aging? Seminars in Hematology, 52(4), 261–269. https://doi.org/10.1053/j.seminhematol.2015.07.006

El-Sayed, M. S., Sale, C., Jones, P. G., & Chester, M. (2000). Blood hemostasis in exercise and training. Medicine and Science in Sports and Exercise, 32(5), 918–925. https://doi.org/10.1097/00005768-200005000-00007

Friesen, K. B., Anz, A. W., Dugas, J. R., Andrews, J. R., & Oliver, G. D. (2021). The Effects of Body Mass Index on Softball Pitchers’ Hip and Shoulder Range of Motion. Sports Medicine International Open, 5(1), 8–13. https://doi.org/10.1055/a-1244-1621

Fukushima, T., Nakano, J., Ishii, S., Natsuzako, A., Kawachi, H., Sakamoto, J., Miyazaki, Y., & Okita, M. (2019). Influence of hemoglobin level on muscle and physical functions, activities of daily living, and quality of life in patients with hematological malignancies. Integrative Cancer Therapies, 18(2), 1-10.

Gallagher, D., Heymsfield, S. B., Heo, M., Jebb, S. A., Murgatroyd, P. R., & Sakamoto, Y. (2000). Healthy percentage body fat ranges: an approach for developing guidelines based on body mass index. The American Journal of Clinical Nutrition, 72(3), 694–701. https://doi.org/10.1093/ajcn/72.3.694

Gantois, P., Pinto, V., Castro, K. R. de, João, P. V, Dantas, P., & Cabral, B. G. A. T. (2017). Skeletal age and explosive strength in young volleyball players. Revista Brasileira de Cineantropometria & Desempenho Humano, 19, 331–342.

Glenn, A., & Armstrong, C. E. (2019). Physiology of red and white blood cells. Anaesthesia & Intensive Care Medicine, 20(3), 170–174.

Gómez Martín, J. P., Clemente-Suárez, V. J., & Ramos-Campo, D. J. (2020). Hematological and running performance modification of trained athletes after reverse vs. block training periodization. International Journal of Environmental Research and Public Health, 17(13), 1-11. https://doi.org/10.3390/ijerph17134825

Hastuti, H. (2018). The Effect of Freeletic Exercise on Leg Strength in the Freeletic Community of Makassar. Nusantara Medical Science Journal, 3(1), 27–31.

Huovinen, H. T., Hulmi, J. J., Isolehto, J., Kyröläinen, H., Puurtinen, R., Karila, T., Mackala, K., & Mero, A. A. (2015). Body composition and power performance improved after weight reduction in male athletes without hampering hormonal balance. Journal of Strength and Conditioning Research, 29(1), 29–36. https://doi.org/10.1519/JSC.0000000000000619

Katralli, J., & Goudar, S. S. (2012). Anthropometric Profile and Special Judo Fitness levels of Indian Judo Players. Asian Journal of Sports Medicine, 3(2), 113–118. https://doi.org/10.5812/asjsm.34710

Katsounaros, I., Cherevko, S., Zeradjanin, A. R., & Mayrhofer, K. J. (2014). Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angewandte Chemie, 53(1), 102–121. https://doi.org/10.1002/anie.201306588

López-Alonzo, S. J., Rivera-Sosa, J. M., Buenaventura Pardo-Remetería, J., & Muñoz-Daw, M. de J. (2016). Indicadores de condición física en escolares mexicanos con sobrepeso y obesidad. Boletin Medico Del Hospital Infantil de Mexico, 73(4), 243–249. https://doi.org/10.1016/j.bmhimx.2016.06.003

Luzzeri, M., & Chow, G. M. (2020). Presence and search for meaning in sport: Initial construct validation. Psychology of Sport and Exercise, 51, 1-16. https://doi.org/10.1016/j.psychsport.2020.101783

Mairbäurl, H. (2013). Red blood cells in sports: effects of exercise and training on oxygen supply by red blood cells. Frontiers in Physiology, 4, 1-13. https://doi.org/10.3389/fphys.2013.00332

Manolachi, V. (2020). Carbohydrates Energy Reserves as a Factor of Recovery after Training and Competitive Efforts. Revista Românească Pentru Educaţie Multidimensională, 12(1), 357–367.

Markovic, G., & Jaric, S. (2007). Is vertical jump height a body size-independent measure of muscle power? Journal of Sports Sciences, 25(12), 1355–1363. https://doi.org/10.1080/02640410601021713

McArdle, W. D., Katch, F. I., & Katch, V. L. (2014). Exercise physiology: Nutrition, energy, and human performance (8th ed.). Lippincott Williams & Wilkins.

Medina, C., Monge, A., Romero, M., López-Ridaura, R., Barquera, S., Romieu, I., Denova-Gutiérrez, E., & Lajous, M. (2021). Reliability and validity of the Mexican teachers’ physical activity questionnaire (MTPAQ) in a subsample of female Mexican teachers. BMC Sports Science, Medicine & Rehabilitation, 13(1), 1-8. https://doi.org/10.1186/s13102-021-00371-4

Mialich, M. S., Sicchieri, J. M. F., & Junior, A. A. J. (2014). Analysis of body composition: a critical review of the use of bioelectrical impedance analysis. International Journal of Clinical Nutrition, 2(1), 1–10.

Otto, J. M., Montgomery, H. E., & Richards, T. (2013). Haemoglobin concentration and mass as determinants of exercise performance and of surgical outcome. Extreme Physiology & Medicine, 2(1), 1–8. https://doi.org/10.1186/2046-7648-2-33

Patterson, D. D., & Peterson, D. F. (2004). Vertical Jump and Leg Power Norms for Young Adults. Measurement in Physical Education and Exercise Science, 8(1), 33–41. https://doi.org/10.1207/s15327841mpee0801_3

Permana, H., Sukamti, E. R., Suhadi, & Miftachurochmah, Y. (2022). The Impacts of Plyometric Circuit Training before and after Technical Training on Cardiorespiratory and Power Abilities of Junior Male Volleyball Athletes. International Journal of Human Movement and Sports Sciences, 10(4), 823–831. https://doi.org/10.13189/saj.2022.100423

Pittman, R. N. (2013). Oxygen transport in the microcirculation and its regulation. Microcirculation, 20(2), 117–137.

Posey, E. A., Bazer, F. W., & Wu, G. (2021). Amino Acids and Their Metabolites for Improving Human Exercising Performance. Advances in Experimental Medicine and Biology, 1332, 151–166. https://doi.org/10.1007/978-3-030-74180-8_9

Saha, D., Patgaonkar, M., Shroff, A., Ayyar, K., Bashir, T., & Reddy, K. V. (2014). Hemoglobin expression in nonerythroid cells: novel or ubiquitous?. International Journal of Inflammation, 2014, 1-8. https://doi.org/10.1155/2014/803237

Schumacher, Y. O., Schmid, A., Grathwohl, D., Bültermann, D., & Berg, A. (2002). Hematological indices and iron status in athletes of various sports and performances. Medicine and Science in Sports and Exercise, 34(5), 869–875. https://doi.org/10.1097/00005768-200205000-00022

Shimizu, Y., Yamanashi, H., Noguchi, Y., Koyamatsu, J., Nagayoshi, M., Kiyoura, K., Fukui, S., Tamai, M., Kawashiri, S.-Y., & Arima, K. (2018). Association of hemoglobin concentration with handgrip strength in relation to hepatocyte growth factor levels among elderly Japanese men aged 60–69 years: a cross-sectional study. Environmental Health and Preventive Medicine, 23(1), 1–9.

Škovierová, H., Vidomanová, E., Mahmood, S., Sopková, J., Drgová, A., Červeňová, T., Halašová, E., & Lehotský, J. (2016). The molecular and cellular effect of homocysteine metabolism imbalance on human health. International Journal of Molecular Sciences, 17(10), 1-18. https://doi.org/10.3390/ijms17101733

Spyrou, K., Freitas, T. T., Marín-Cascales, E., & Alcaraz, P. E. (2020). Physical and Physiological Match-Play Demands and Player Characteristics in Futsal: A Systematic Review. Frontiers in Psychology, 11, 1-17. https://doi.org/10.3389/fpsyg.2020.569897

Srivastava, T., Negandhi, H., Neogi, S. B., Sharma, J., & Saxena, R. (2014). Methods for hemoglobin estimation: A review of" what works. Journal of Hematology & Transfusion, 2(3), 1-7.

Thomas, D. T., Erdman, K. A., & Burke, L. M. (2016). Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: nutrition and athletic performance. Journal of the Academy of Nutrition and Dietetics, 116(3), 501–528. https://doi.org/10.1016/j.jand.2015.12.006

Tsai, K. Z., Lai, S. W., Hsieh, C. J., Lin, C. S., Lin, Y. P., Tsai, S. C., Chung, P. S., Lin, Y. K., Lin, T. C., & Ho, C. L. (2019). Association between mild anemia and physical fitness in a military male cohort: The CHIEF study. Scientific Reports, 9(1), 1-8. https://doi.org/10.1038/s41598-019-47625-3

Turner, J., Parsi, M., & Badireddy, M. (2022). Anemia. In StatPearls. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK526017

Waardenburg, M., Visschers, M., Deelen, I., & van Liempt, I. (2019). Sport in liminal spaces: The meaning of sport activities for refugees living in a reception centre. International Review for the Sociology of Sport, 54(8), 938–956. https://doi.org/10.1177/1012690218768200

Wardyn, G. G., Rennard, S. I., Brusnahan, S. K., McGuire, T. R., Carlson, M. L., Smith, L. M., McGranaghan, S., & Sharp, J. G. (2008). Effects of exercise on hematological parameters, circulating side population cells, and cytokines. Experimental Hematology, 36(2), 216–223.

Who, & Chan, M. (2011). Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. Geneva, Switzerland: World Health Organization, 1–6. https://doi.org/2011

Williams, A. M., Ford, P. R., & Drust, B. (2023). Science and soccer: Developing elite performers. Routledge.

Ziv, G., & Lidor, R. (2010). Vertical jump in female and male volleyball players: a review of observational and experimental studies. Scandinavian Journal of Medicine & Science in Sports, 20(4), 556–567. https://doi.org/10.1111/j.1600-0838.2009.01083.x

Publicado
01-12-2025
Cómo citar
Fauzi, Handaka, R. D., Majid, N. C., & Miftachurochmah, Y. (2025). Un análisis de los niveles de hemoglobina y el porcentaje de grasa corporal sobre la potencia de las piernas en atletas de voleibol. SPORT TK-Revista EuroAmericana De Ciencias Del Deporte, 14, 132. https://doi.org/10.6018/sportk.605591
Número
Sección
Artículos