Physical and psychological rehabilitation for common weightlifting injuries

Autores/as

  • Tang Xun Yang Departamento de Deportes de Combate y Deportes de Fuerza, Universidad Nacional de Ucrania sobre Educación Física y Deportes, Kiev, Ucrania.
  • Wei Wang Departamento de Educación Física, Universidad Xihua, Chengdu, China.
  • Elena Kozlova Departamento de Historia y Teoría del Deporte Olímpico, Universidad Nacional de Ucrania sobre Educación Física y Deporte, Kiev, Ucrania.
  • Valentin Oleshko Departamento de Deportes de Combate y Deportes de Fuerza, Universidad Nacional de Ucrania sobre Educación Física y Deportes, Kiev, Ucrania.
DOI: https://doi.org/10.6018/sportk.556801
Palabras clave: Stimulant; Formation; Model; Functioning

Resumen

In the process of weightlifting, there is an increased load on both the respiratory system, the cardiovascular system, and on individual parts of the nervous system. At the same time, special attention is paid to the possibilities of providing a stable body functioning after the cancellation of treatment course and the corresponding pharmacological support of athletes with treatment schedule or without it. The novelty of the study is determined by the need to ensure constant and stable work of the cardiovascular system. The authors note that this is possible both when the body performance indicators return to the level before injury, and in conditions of returning to original sports results. It is determined in the paper that the use of the instrumental model will make it possible to develop sustainable energy consumption and coordinate the balancing of loads on an athlete during the period of recovery after injury. Model formation is based on uniform signals in a correlated random process in a simulation model. The practical significance of the study is determined by the need to structure the training loads in the post-traumatic period. This reduces a number of physiological and psychological stresses on a person and allows increasing in the long term the loads that the athlete plans to utilise after returning to the sports sector.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abadi, A. M., & Sumarna. (2019). Construction of fuzzy system for classification of heart disease based on phonocardiogram signal, 64-69. In: Proceedings – 2019 1st International Conference on Artificial Intelligence and Data Sciences. Ipoh: Institute of Electrical and Electronics Engineers (IEEE).

Ahmad, S., & Iqbal, T. (2022). The role of management commitment in adoption of occupational health and safety at higher education institutions. Entrepreneurship and Sustainability Issues, 9(3), 103-117. http://doi.org/10.9770/jesi.2022.9.3(7)

Baimbetov, A., Bizhanov, K., Yakupova, I., Bairamov, B., Medeubekov, U., & Madyarov, V. (2020). Long-term results of simultaneous hybrid ablation of therapy-resistant atrial fibrillation. European Heart Journal, 41, 626-626.

Baimbetov, A., Bizhanov, K., Yergeshov, K., Bayramov, B., Yakupova, I., & Bozshagulov, T. (2018a). One year continuously monitoring follow up results after single procedure atrial fibrillation ablation using cryoballoon second generation. European Heart Journal, 39, 1225-1225.

Baimbetov, A., Kuzhukeyev, M., Bizhanov, K., Ergeshov, K., Yakupova, I., Bozshagulov, T., & Ismailova, G. (2018b). Atrial fibrillation ablation using second-generation cryoballoon. Cryoballoon ablation. New Armenian Medical Journal, 12(1), 64-71.

Baimbetov, A.K., Abzaliev, K.B., Jukenova, A.M., Bizhanov, K.A., Bairamov, B.A., & Ualiyeva, A.Y. (2022). The efficacy and safety of cryoballoon catheter ablation in patients with paroxysmal atrial fibrillation. Irish Journal of Medical Science, 191(1), 187-193. https://doi.org/10.1007/s11845-021-02560-z

Balasubramaniam, D., & Nedumaran, D. (2010). Design and development of digital signal processor based phonocardiogram system, 366–370. In: International Conference on Signal Acquisition and Processing. Bangalore: Institute of Electrical and Electronics Engineers (IEEE).

Kumar, S., & Jagannath, M. (2015). Analysis of Phonocardiogram signal for biometric identification system, pp. 233-243. In: International Conference on Pervasive Computing: Advance Communication Technology and Application for Society. Pune: Institute of Electrical and Electronics Engineers (IEEE).

Cherif, L. H., & Debbal, S. M. (2016). Optimal nodes combination of a wavelet packet tree for phonocardiogram signal analysis. International Journal of Innovative Computing, 12(1), 215-224.

Cherif, L. H., Debbal, S. M., & Bereksi-Reguig, F. (2010). Choice of the wavelet analyzing in the phonocardiogram signal analysis using the discrete and the packet wavelet transform. Expert Systems with Applications, 37(2), 913-918. https://doi.org/10.1016/j.eswa.2009.09.036

Debbal, S. M., & Bereksi-Reguig, F. (2008). Filtering and classification of phonocardiogram signals using wavelet transform. Journal of Medical Engineering and Technology, 32(1), 53-65. https://doi.org/10.1080/03091900600750348

El Badlaoui, O., & Hammouch, A. (2017). Phonocardiogram classification based on MFCC extraction, 217–221. In: International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications. Annecy: IEEE.

Gopika, P., Sowmya, V., Gopalakrishnan, E. A., & Soman, K. P. (2019). Performance improvement of deep learning architectures for phonocardiogram signal classification using fast fourier transform, pp. 290–294. In: Proceedings of the 2019 9th International Conference on Advances in Computing and Communication. Kochi: IEEE.

Had, A., Sabri, K., & Aoutoul, M. (2020). Detection of Heart Valves Closure Instants in Phonocardiogram Signals. Wireless Personal Communications, 112(3), 1569-1585. https://doi.org/10.1007/s11277-020-07116-5

Kahankova, R., Martinek, R., Jaros, R., Nedoma, J., Fajkus, M., & Vanus, J. (2018). Least Mean Squares Adaptive Algorithms Optimization for Fetal Phonocardiogram Extraction. IFAC-PapersOnLine, 51(6), 60-65. https://doi.org/10.1016/j.ifacol.2018.07.130

Kim, D. J. (2015). Formant detection technique for the phonocardiogram spectra using the 1st and 2nd derivatives. Transactions of the Korean Institute of Electrical Engineers, 64(11), 1605-1610. https://doi.org/10.5370/KIEE.2015.64.11.1605

Kluszczynski, M., & Czernicki, J. (2012). Analysis of Changes in Selected Body Characteristics in Many Years of Observation of Children and Adolescents with Faulty Body Posture. Studies in Health Technology and Informatics, 176, 465-465.

Kluszczynski, M., Pilis, A., & Czaprowski, D. (2022). The importance of the size of the trunk inclination angle in the early detection of scoliosis in children. BMC Musculoskeletal Disorders, 23(1), 5. https://doi.org/10.1186/s12891-021-04965-4

Kouras, N., Boutana, D., Benidir, M., & Barkat, B. (2009). A comparative study of some wavelet functions in the denoising of phonocardiogram signals, pp. 25-32. In: Proceedings of the 2nd International Conference on Advanced Computer Theory and Engineering. Cairo: Amer Society of Mechanical. 323 p.

Lehner, R. J., & Rangayyan, R. M. (1987). A Three–Channel Microcomputer System for Segmentation and Characterization of the Phonocardiogram. Browse Journals & Magazines, 34(6), 485-489.

Nurtas, M., Baishemirov, Z., Tsay, V., Tastanov, M., & Zhanabekov, Z. (2020). Applying neural network for predicting cardiovascular disease risk. News of the National Academy of Sciences of the Republic of Kazakhstan-Series Physico-Mathematical, 4(332), 28-34. https://doi.org/10.32014/2020.2518-1726.62

Shino, H., Yoshida, H., Yana, K., Harada, K., Sudoh, J., & Harasawa, E. (1996). Detection and classification of systolic murmur for phonocardiogram screening, pp. 123-124. In: Annual International Conference of the IEEE Engineering in Medicine and Biology – Proceedings. Amsterdam: IEEE. 2340 p.

Sujadevi, V. G., Soman, K. P., Sachin Kumar, S., Mohan, N., & Arunjith, A. S. (2017). Denoising of phonocardiogram signals using variational mode decomposition, pp. 1443-1446. In: International Conference on Advances in Computing, Communications and Informatics. Udupi: IEEE. 2409 p.

Szczerba, E., Kaminska, K., Mierzwa, T., Misiek, M., Kowalewski, J., & Lewandowska, M.A. (2021). BRCA1/2 Mutation Detection in the Tumor Tissue from Selected Polish Patients with Breast Cancer Using Next Generation Sequencing. Genes, 12(4), 519. https://doi.org/10.3390/genes12040519

Varshney, S., & Singh, S. (2020). Computation of biological murmurs in phonocardiogram signals using fast fourier discrete wavelet transform, pp. 234-240. In: Proceedings of International Conference on Computation, Automation and Knowledge Management. Dubai: IEEE. 559 p.

Wasik, J., Motow-Czyz, M., Shan, G. B., & Kluszczynski, M. (2015). Comparative analysis of body posture in child and adolescent taekwon-do practitioners and non-practitioners. Ido Movement for Culture-Journal of Martial Arts Anthropology, 15(3), 35-40. https://doi.org/10.14589/ido.15.3.5

Yan, H., Wei, X., Han, F., & Lin, J. (2011). Monitoring the impact of general anesthesia induction and endotracheal intubations on cardiac performance by phonocardiogram. Biomedical Engineering – Applications, Basis and Communications, 23(3), 231-236. https://doi.org/10.4015/S1016237211002566

Zhao, Z., Zhang, X., Fang, Z., Chen, X., Du, L., & Li, T. (2017). Phonocardiogram Segmentation and Abnormal Phonocardiogram Screening Algorithm Based on Cardiac Cycle Estimation. Dianzi Yu Xinxi Xuebao. Journal of Electronics and Information Technology, 39(11), 2677-2683. https://doi.org/10.11999/JEIT170108

Publicado
17-04-2024
Cómo citar
Yang, T. X., Wang, W., Kozlova, E., & Oleshko, V. (2024). Physical and psychological rehabilitation for common weightlifting injuries. SPORT TK-Revista EuroAmericana de Ciencias del Deporte, 13, 29. https://doi.org/10.6018/sportk.556801
Número
Sección
Artículos