Efecto del ejercicio y la actividad física sobre las funciones ejecutivas en niños y en jóvenes. Una revisión sistemática

Autores/as

  • JA Medina-Cascales
  • F. Alarcón-López
  • A. Castillo-Díaz
  • D. Cárdenas-Vélez
DOI: https://doi.org/10.6018/sportk.391741
Palabras clave: funciones ejecutivas, actividad física, ejercicio, jóvenes

Resumen

En la presente revisión sistemática cualitativa se intenta avanzar en el conocimiento sobre la incidencia de la actividad física sobre las funciones ejecutivas, focalizada en poblaciones sanas infantiles, adolescentes y jóvenes. Se identificaron, categorizaron y analizaron artículos de bases de datos electrónicas como ISI Web of Knowledge, SCOPUS, PubMed, SPORTDiscus, PsyINFO, ERIC, Google Scholar y Dialnet. Atendiendo a los criterios de inclusión/exclusión, siguiendo la declaración PRISMA para registrar y categorizar los resultados, y mediante la herramienta de evaluación de calidad “The Effective Public Health Practice Project”, se seleccionaron finalmente 44 investigaciones experimentales, estructuradas en episodios agudos y crónicos de actividad física bajo dos enfoques: cuantitativos y cualitativos. Los resultados muestran una superior cantidad de experimentos con episodios agudos cuantitativos (45,45%), frente a los agudos cualitativos (18,18%), crónicos cuantitativos (20,45%) y crónicos cualitativos (15,92%). Los análisis de estas investigaciones han permitido identificar los beneficios de los diferentes tipos de actividad física estudiados sobre los componentes ejecutivos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Akatsuka, K., Yamashiro, K., Nakazawa, S., Mitsuzono, R., & Maruyama, A. (2015). Acute aerobic exercise influences the inhibitory process in the go/no-go task in humans. Neuroscience Letters, 600, 80–84. https://doi.org/10.1016/j.neulet.2015.06.004

Alarcon, F., Ureña, N., Castillo, A., Martín, D., & Cárdenas, D. (2017). Las funciones ejecutivas como predictoras del nivel de pericia en jugadores de baloncesto. Revista de Psicología Del Deporte, 26(1), 71–74.

*Alesi, M., Bianco, A., Luppina, G., Palma, A., & Pepi, A. (2016). Improving Children’s Coordinative Skills and Executive Functions: The Effects of a Football Exercise Program. Perceptual and Motor Skills, 122(1), 27–46. https://doi.org/10.1177/0031512515627527

*Alesi, M., Bianco, A., Padulo, J., Luppina, G., Petrucci, M., Paoli, A., … Pepi, A. (2015). Motor and cognitive growth following a Football Training Program. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.01627

*Alves, C. R., Gualano, B., Takao, P. R., Avakian, P., Fernandes, R. M., Mistura, D., … Takito, M. Y. (2012). Effects of acute physical exercise on executive functions: a comparison between aerobic and strength exercise. Journal of Sport & Exercise Psychology, 34(4), 539–549. https://doi.org/10.1123/jsep.34.4.539

Bamidis, P. D., Vivas, A. B., Styliadis, C., Frantzidis, C., Klados, M., Schlee, W., & Papageorgiou, S. G. (2014). A review of physical and cognitive interventions in aging. Neuroscience & Biobehavioral Reviews, 44, 206–220. https://doi.org/10.1016/j.neubiorev.2014.03.019

*Benzing, V., Heinks, T., Eggenberger, N., & Schmidt, M. (2016). Acute cognitively engaging exergame-based physical activity enhances executive functions in adolescents. PloS One, 11(12), e0167501. https://doi.org/10.1371/journal.pone.0167501

*Berrios, B., Pantoja, A., & Latorre, P. A. (2019). Acute effect of two different physical education classes on memory in children school-age. Cognitive Development, 50, 98–104. https://doi.org/10.1016/j.cogdev.2019.03.004

*Berse, T., Rolfes, K., Barenberg, J., Dutke, S., Kuhlenbäumer, G., Völker, K., … Knecht, S. (2015). Acute physical exercise improves shifting in adolescents at school: evidence for a dopaminergic contribution. Frontiers in Behavioral Neuroscience, 9(196). https://doi.org/10.3389/fnbeh.2015.00196

Best, J. R. (2010). Effects of physical activity on children’s executive function: Contributions of experimental research on aerobic exercise. Developmental Review, 30(4), 331–351. https://doi.org/10.1016/j.dr.2010.08.001

Best, J. R. (2012). Exergaming immediately enhances children’s executive function. Developmental Psychology. https://doi.org/10.1037/a0026648

Bove, R. M., Brick, D. J., Healy, B. C., Mancuso, S. M., Gerweck, A. V, Bredella, M. A., … Miller, K. K. (2013). Metabolic and endocrine correlates of cognitive function in healthy young women. Obesity (Silver Spring, Md.), 21(7), 1343–1349. https://doi.org/10.1002/oby.20212

Budde, H., Voelcker-Rehage, C., Pietraßyk-Kendziorra, S., Ribeiro, P., & Tidow, G. (2008). Acute coordinative exercise improves attentional performance in adolescents. Neuroscience Letters, 441, 219–223. https://doi.org/10.1016/j.neulet.2008.06.024

*Bugge, A., Tarp, J., Ostergaard, L., Domazet, S. L., Andersen, L. B., Froberg, K., … Froberg, and K. (2014). LCoMotion – Learning, Cognition and Motion; a multicomponent cluster randomized school-based intervention aimed at increasing learning and cognition - rationale, design and methods. BMC Public Health, 14, 967. https://doi.org/10.1186/1471-2458-14-967

Buttelmann, F., & Karbach, J. (2017). Development and Plasticity of Cognitive Flexibility in Early and Middle Childhood. Frontiers in Psychology, 8, 1040. https://doi.org/10.3389/fpsyg.2017.01040

Cárdenas, D., Conde-González, J., & Perales, J. C. (2017). La fatiga como estado motivacional subjetivo. Revista Andaluza de Medicina Del Deporte, 10(1), 31–41. https://doi.org/10.1016/j.ramd.2016.04.001

*Carlier, M., Delevoye-Turrell, Y., & Dione, M. (2014). Cognitive Benefits of Physical Activity Increased when Producing Rhythmic Actions. Procedia - Social and Behavioral Sciences, 126, 235–236. https://doi.org/10.1016/j.sbspro.2014.02.391

Cartwright-Hatton, S., Roberts, C., Chitsabesan, P., Fothergill, C., & Harrington, R. (2004). Systematic review of the efficacy of cognitive behaviour therapies for childhood and adolescent anxiety disorders. The British Journal of Clinical Psychology / the British Psychological Society, 43(Pt 4), 421–436. https://doi.org/10.1348/0144665042388928

*Castelli, D. M., Hillman, C. H., Hirsch, J., Hirsch, A., & Drollette, E. (2011). FIT Kids: Time in target heart zone and cognitive performance. Preventive Medicine, 52. https://doi.org/10.1016/j.ypmed.2011.01.019

*Chaddock-Heyman, L., Erickson, K. I., Voss, M. W., Knecht, A. M., Pontifex, M. B., Castelli, D. M., … Kramer, A. F. (2013). The effects of physical activity on functional MRI activation associated with cognitive control in children: A randomized controlled intervention. Front Hum Neurosci, 7, 72. https://doi.org/10.3389/fnhum.2013.00072

*Chang, Y. K., Chu, C. H., Wang, C. C., Wang, Y. C., Song, T. F., Tsai, C. L., & Etnier, J. L. (2015). Dose-Response Relation between Exercise Duration and Cognition. Medicine and Science in Sports and Exercise, 47(1), 159–165. https://doi.org/10.1249/MSS.0000000000000383

*Chen, A. G., Yan, J., Yin, H. C., Pan, C. Y., & Chang, Y. K. (2014). Effects of acute aerobic exercise on multiple aspects of executive function in preadolescent children. Psychology of Sport and Exercise, 15(6), 627–636. https://doi.org/10.1016/j.psychsport.2014.06.004

Coles, K., & Tomporowski, P. D. (2008). Effects of acute exercise on executive processing, short-term and long-term memory. Journal of Sports Sciences, 26(3), 333–344. https://doi.org/10.1080/02640410701591417

Collins, A., & Koechlin, E. (2012). Reasoning, learning, and creativity: Frontal lobe function and human decision-making. PLoS Biology, 10(3). https://doi.org/10.1371/journal.pbio.1001293

Covassin, T., Weiss, L., Powell, J., & Womack, C. (2007). Effects of a maximal exercise test on neurocognitive function. British Journal of Sports Medicine, 41(6), 370–374. https://doi.org/10.1136/bjsm.2006.032334

*Dalziell, A., Boyleb, J., & Mutriea, N. (2015). Better Movers and Thinkers (BMT): An Exploratory Study of an Innovative Approach to Physical Education. Europe’s Journal of Psychology, 11(4), 722–741. https://doi.org/10.5964/ejop.v11i4.950

Dao, E., Davis, J. C., Sharma, D., Chan, a, Nagamatsu, L. S., & Liu-Ambrose, T. (2013). Change in Body Fat Mass Is Independently Associated with Executive Functions in Older Women: A Secondary Analysis of a 12-Month Randomized Controlled Trial. PLoS ONE, 8(1), e52831. https://doi.org/10.1371/journal.pone.0052831

Deeks, J. J., Dinnes, J., D’amico, R., Sowden, A. J., Sakarovitch, C., Song, F., … Altman, D. G. (2003). Evaluating non-randomised intervention studies. Health Technology Assessment (Winchester, England), 7(27), 3–10.

*Del Giorno, J. M., Hall, E., O’Leary, K. C., Bixby, W. R., & Miller, P. C. (2010). Cognitive function during acute exercise: a test of the transient hypofrontality theory. Journal of Sport & Exercise Psychology, 32(3), 312–323. https://doi.org/10.1123/jsep.32.3.312

Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135–168. https://doi.org/10.1146/annurev-psych-113011-143750

Diamond, A., & Ling, D. S. S. (2016). Conclusions about interventions, programs, and approaches for improving executive functions that appear justified and those that, despite much hype, do not. Developmental Cognitive Neuroscience, 18, 34–48. https://doi.org/10.1016/j.dcn.2015.11.005

*Drollette, E. S., Shishido, T., Pontifex, M. B., & Hillman, C. H. (2012). Maintenance of cognitive control during and after walking in preadolescent children. Medicine and Science in Sports and Exercise, 44(10), 2017–2024. https://doi.org/10.1249/mss.0b013e318258bcd5

Durlak, J. A., & Lipsey, M. W. (1991). A practitioner’s guide to meta-analysis. American Journal of Community Psychology, 19(3), 291–332. https://doi.org/10.1007/BF00938026

*Egger, F., Conzelmann, A., & Schmidt, M. (2018). The effect of acute cognitively engaging physical activity breaks on children’s executive functions: Too much of a good thing? Psychology of Sport and Exercise, 36, 178–186. https://doi.org/10.1016/j.psychsport.2018.02.014

Esteban-Cornejo, I., Tejero-González, C. M., Martínez-Gomez, D., Del-Campo, J., González-Galo, A., & Padilla-Moledo, C. (2014). Independent and combined influence of the components of physical fitness on academic performance in youth. The Journal of Pediatrics, 165(2), 306–312. https://doi.org/10.1016/j.jpeds.2014.04.044

Eysenck, H. J. (1995). Problems with meta-analysis. In I. Chalmers & G. G. Altman (Eds.), Systematic Reviews (pp. 64–74). London: BMJ Publishing Group.

Fabel, K., & Kempermann, G. (2008). Physical activity and the regulation of neurogenesis in the adult and aging brain. Neuromolecular Medicine, 10(2), 59–66. https://doi.org/10.1007/s12017-008-8031-4

Fernandez-Ríos, L., & Buela-Casal, G. (2009). Standards for the preparation and writing of Psychology review articles. International Journal of Clinical and Health Psychology, 9(2), 329–344.

Fissler, P., Küster, O., Schlee, W., & Kolassa, I. T. (2013). Novelty interventions to enhance broad cognitive abilities and prevent dementia: synergistic approaches for the facilitation of positive plastic change. In Progress in Brain Research, 207, 403–434. https://doi.org/10.1016/B978-0-444-63327-9.00017-5

Garaigordobil, M., & Berrueco, L. (2007). Efectos de un programa de intervención en niños de 5 a 6 años: evaluación del cambio proactivo en factores conductuales y cognitivos del desarrollo. Summa Psicológica UST, 4(2), 3–20.

Greene, C. M., Bahri, P., & Soto, D. (2010). Interplay between affect and arousal in recognition memory. PLoS ONE, e11739, e11739. https://doi.org/10.1371/journal.pone.0011739

Hasher, L., Lustig, C., & Zacks, R. (2008). Inhibitory Mechanisms and the Control of Attention. Variation in Working Memory. https://doi.org/10.1093/acprof:oso/9780195168648.003.0009

Herold, F., Hamacher, D., Schega, L., & Müller, N. G. (2018). Thinking while Moving or Moving while Thinking–Concepts of motor-cognitive training for cognitive performance enhancement. Frontiers in Aging Neuroscience, 10, 228. https://doi.org/10.3389/fnagi.2018.00228

*Hillman, C. H., Pontifex, M. B., Castelli, D. M., Khan, N. a., Raine, L. B., Scudder, M. R., … Kamijo, K. (2014). Effects of the FITKids Randomized Controlled Trial on Executive Control and Brain Function. Pediatrics, 134(4), e1063–e1071. https://doi.org/doi:10.1542/peds.2013-3219

*Hsieh, S. S., Chang, Y. K., Hung, T. M., & Fang, C. L. (2015). The effects of acute resistance exercise on young and older males’ working memory. Psychology of Sport and Exercise, In press. https://doi.org/10.1016/j.psychsport.2015.09.004

*Huertas, F., Zahonero, J., Sanabria, D., & Lupiáñez, J. (2011). Functioning of the attentional networks at rest vs. during acute bouts of aerobic exercise. Journal of Sport & Exercise Psychology, 33(5), 649–665. https://doi.org/10.1123/jsep.33.5.649

*Ishihara, T., Sugasawa, S., Matsuda, Y., & Mizuno, M. (2017). Relationship between sports experience and executive function in 6-12 year old children: independence from physical fitness and moderation by gender. Developmental Science, e12555. https://doi.org/10.1111/desc.12555

*Jäger, K., Schmidt, M., Conzelmann, A., & Roebers, C. M. (2014). Cognitive and physiological effects of an acute physical activity intervention in elementary school children. Frontiers in Phycology, 18(5), 1473. https://doi.org/10.3389/fpsyg.2014.01473

*Jäger, K., Schmidt, M., Conzelmann, A., & Roebers, C. M. (2015). The effects of qualitatively different acute physical activity interventions in real-world settings on executive functions in preadolescent children. Mental Health and Physical Activity. https://doi.org/10.1016/j.mhpa.2015.05.002

*Kamijo, K., Pontifex, M. B., O’Leary, K. C., Scudder, M. R., Wu, C., Castell, D. M., & Hillman, C. H. (2011). The effects of an afterschool physical activity program on working memory in preadolescent children. Developmental Science, 14(5), 1046–1058. https://doi.org/10.1111/j.1467-7687.2011.01054.x

Könen, T., & Karbach, J. (2015). The benefits of looking at intraindividual dynamics in cognitive training data. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.00615

*Konishi, K., Kimura, T., Yuhaku, A., Kurihara, T., Fujimoto, M., Hamaoka, T., & Sanada, K. (2017). Effect of sustained high-intensity exercise on executive function. The Journal of Physical Fitness and Sports Medicine, 6(2), 111–117. https://doi.org/10.7600/jpfsm.6.111

*Kulinna, P. H., Stylianou, M., Dyson, B., Banville, D., Dryden, C., & Colby, R. (2018). The Effect of an Authentic Acute Physical Education Session of Dance on Elementary Students’ Selective Attention. BioMed Research International, 2018. https://doi.org/10.1155/2018/8790283

*Kvalø, S. E., Bru, E., Brønnick, K., & Dyrstad, S. M. (2017). Does increased physical activity in school affect children’s executive function and aerobic fitness? Scandinavian Journal of Medicine and Science in Sport. https://doi.org/10.1111/sms.12856

Liang, J., Matheson, B. E., Kaye, W. H., & Boutelle, K. N. (2014). Neurocognitive correlates of obesity and obesity-related behaviors in children and adolescents. International Journal of Obesity (2005), 38(4), 494–506. https://doi.org/10.1038/ijo.2013.142

*Lind, R. R., Geertsen, S. S., Ørntoft, C., Madsen, M., Larsen, M. N., Dvorak, J., & Krustrup, P. (2018). Improved cognitive performance in preadolescent Danish children after the school-based physical activity programme “FIFA 11 for Health” for Europe–A cluster-randomised controlled trial. European Journal of Sport Science, 18(1), 130–139. https://doi.org/10.1080/17461391.2017.1394369

*Loprinzi, P. D., & Kane, C. (2015). Exercise and cognitive function: a randomized controlled trial examining acute exercise and free-living physical activity and sedentary effects. Mayo Clinic Proceedings, 90(4), 450–460. https://doi.org/10.1016/j.mayocp.2014.12.023

*Ludyga, S., Gerber, M., Herrmann, C., Brand, S., & Pühse, U. (2018). Chronic effects of exercise implemented during school-break time on neurophysiological indices of inhibitory control in adolescents. Trends in Neuroscience and Education, 10, 1–7. https://doi.org/10.1016/j.tine.2017.11.001

*Ludyga, S., Gerber, M., Kamijo, K., Brand, S., & Pühse, U. (2018). The effects of a school-based exercise program on neurophysiological indices of working memory operations in adolescents. Journal of Science and Medicine in Sport, 21(8), 833–838. https://doi.org/10.1016/j.jsams.2018.01.001

Lunt, L., Bramham, J., Morris, R. G., Bullock, P. R., Selway, R. P., Xenitidis, K., & David, A. S. (2012). Prefrontal cortex dysfunction and “Jumping to Conclusions”: Bias or deficit? Journal of Neuropsychology, 6(1), 65–78. https://doi.org/10.1111/j.1748-6653.2011.02005.x

Marín, F., Sánchez, J., & López, J. A. (2009). El metaanálisis en el ámbito de las Ciencias de la Salud: una metodología imprescindible para la eficiente acumulación del conocimiento. Fisioterapia. https://doi.org/10.1016/j.ft.2009.02.002

*Martín, I., Chirosa, L. J., Reigal, R. E., Hernández, A., Juárez, R., & Guisado, R. (2015). Efectos de la actividad física sobre las funciones ejecutivas en una muestra de adolescentes. Anales de Psicología, 31(3), 962–971.

*Martins, N., & Gotuzo, A. (2015). Is it possible to promote executive functions in preschoolers? A case study in Brazil. International Journal of Child Care and Education Policy, 9(6). https://doi.org/10.1186/s40723-015-0010-2

Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, a H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: a latent variable analysis. Cognitive Psychology, 41(1), 49–100. https://doi.org/10.1006/cogp.1999.0734.

Moreau, D., & Conway, A. R. (2014). The case for an ecological approach to cognitive training. Trends Cognitive ScienceSci, 18, 334–336. https://doi.org/10.1016/j.tics.2014.03.009

Noriaki, W., Hisaaki, T., Satoko, S., Toshiaki, W., Saiki, T., Keisuke, N., & Koji, T. (2016). Effectiveness of Two Types of Exercises before Classes on Inhibitory Function. Journal Child Adolesc Behav, 4, 284. https://doi.org/10.4172/2375-4494.1000284

*Pesce, C., Masci, I., Marchetti, R., Vazou, S., Sääkslahti, A., & Tomporowski, P. D. (2016). Deliberate Play and Preparation Jointly Benefit Motor and Cognitive Development: Mediated and Moderated Effects. Frontiers in Psychology, 7, 349. https://doi.org/10.3389/fpsyg.2016.00349

Pontifex, M. B., Hillman, C. H., Fernhall, B., Thompson, K. M., & Valentini, T. A. (2009). The effect of acute aerobic and resistance exercise on working memory. Medicine and Science in Sports and Exercise, 41(4), 927–934. https://doi.org/10.1249/mss.0b013e3181907d69

*Ramos, I. A., Browne, R. A. V., da Silva Machado, D. G., Sales, M. M., dos Santos Pereira, R. M., & Grubert, C. S. (2017). Ten Minutes of Exercise Performed Above Lactate Threshold Improves Executive Control in Children. Journal of Exercise Physiologyonline, 20(2), 73–83.

Robinson, L. E., Palmer, K. K., & Bub, K. L. (2016). Effect of the children’s health activity motor program on motor skills and self-regulation in head start preschoolers: an efficacy trial. Frontiers in Public Health, 4. https://doi.org/10.3389/fpubh.2016.00173

Rothstein, H. R. R., & Hopewell, S. (2009). Grey literature. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (2a ed, pp. 103–125). Nueva York: Russell Sage Foundation.

Rueda, M. R., Conejero, Á., & Guerra, S. (2016). Educar la atención desde la neurociencia. Educating Attention from Neuroscience. Revista de Investigación Educacional Latinoamericana, 53(1), 1–16. https://doi.org/10.7764/pel.53.1.2016.3

Rueda, M. R., Posner, M. R., & Rothbart, M. K. (2005). The development of executive attention: contributions to the emergence of self-regulation. Dev. Neuropsychol, 28, 573– 594. https://doi.org/doi: 10.1207/s15326942dn2802_2

*Sánchez-López, M., Ruiz-Hermosa, A., Redondo-Tébar, A., Visier-Alfonso, M. E., Jimenez-López, E., Martínez-Andres, M., & Martínez-Vizcaíno, V. (2019). Rationale and methods of the MOVI-da10! Study–a cluster-randomized controlled trial of the impact of classroom-based physical activity programs on children’s adiposity, cognition and motor competence. BMC Public Health, 19(1), 417. https://doi.org/10.1186/s12889-019-6742-0

Sanchez-Meca, J. (2010). Cómo realizar una revisión sistemática y un meta-análisis. Aula Abierta, 38, 53–63.

Sibley, B. A., & Beilock, S. L. (2007). Exercise and working memory: an individual differences investigation. Journal of Sport & Exercise Psychology, 29(6), 783–791. https://doi.org/10.1123/jsep.29.6.783

*Smith, M., Tallis, J., Miller, A., Clarke, N. D., & Guimarães-Ferreira, L. Duncan, M. J. (2016). The effect of exercise intensity on cognitive performance during short duration treadmill running. Journal of Human Kinetics, 50(2), 27–35. https://doi.org/10.1515/hukin-2015-0167

*Soga, K., Shishido, T., & Nagatomi, R. (2015). Executive function during and after acute moderate aerobic exercise in adolescents. Psychology of Sport and Exercise, 16, 7–17. https://doi.org/10.1016/j.psychsport.2014.08.010

*Stein, M., Auerswald, M., & Ebersbach, M. (2017). Relationships between Motor and Executive Functions and the Effect of an Acute Coordinative Intervention on Executive Functions in Kindergartners. Frontiers in Psychology, 8, 859. https://doi.org/10.3389/fpsyg.2017.00859

*Tam, N. D. (2013). Improvement of processing speed in executive function immediately following an increase in cardiovascular activity. Cardiovascular Psychiatry and Neurology, 2013, 212767. https://doi.org/10.1155/2013/212767

Thomas, B. H., Ciliska, D., Dobbins, M., & Micucci, S. (2004). A process for systematically reviewing the literature: Providing the research evidence for public health nursing interventions. Worldviews on Evidence-Based Nursing, 1(3), 176–184. https://doi.org/10.1111/j.1524-475x.2004.04006.x

Tirapu-Ustárroz, J., Muñoz-Céspedes, J. M., & Pelegrín-Valero, C. (2002). Funciones ejecutivas: Necesidad de una integración conceptual. Revista de Neurologia, 34(7), 673–685.

Tomporowski, P. D., Lambourne, K., & Okumura, M. S. (2011). Physical activity interventions and children’s mental function: An introduction and overview. Preventive Medicine, 52(SUPPL.). https://doi.org/10.1016/j.ypmed.2011.01.028

Tomporowski, P. D., McCullick, B., Pendleton, D. M., & Pesce, C. (2015). Exercise and children’s cognition: the role of exercise characteristics and a place for metacognition. Journal of Sport and Health Science, 4(1), 47–55. https://doi.org/10.1016/j.jshs.2014.09.003

Urrútia, G., & Bonfill, X. (2010). Declaración PRISMA: una propuesta para mejorar la publicación de revisiones sistemáticas y metaanálisis. Medicina Clínica, 135(11), 507–511. https://doi.org/10.1016/j.medcli.2010.01.015

*van den Berg, V., Saliasi, E., de Groot, R. H., Jolles, J., Chinapaw, M. J., & Singh, A. S. (2016). Physical Activity in the School Setting: Cognitive Performance Is Not Affected by Three Different Types of Acute Exercise. Frontiers in Psychology, 7. https://doi.org/10.3389/fpsyg.2016.00723. eCollection 2016.

*Wang, C. C., Chu, C. H., Chu, I. H., Chan, K. H., & Chang, Y. K. (2013). Executive function during acute exercise: the role of exercise intensity. Journal of Sport & Exercise Psychology, 35(4), 358–367. https://doi.org/10.1123/jsep.35.4.358

*Zach, S., & Eyal, S. (2016). The Influence of Acute Physical Activity on Working Memory. Perceptual and Motor Skills, 122(2), 365–374. https://doi.org/10.1177/0031512516631066.

Publicado
28-07-2019
Cómo citar
Medina-Cascales, J., Alarcón-López, F., Castillo-Díaz, A., & Cárdenas-Vélez, D. (2019). Efecto del ejercicio y la actividad física sobre las funciones ejecutivas en niños y en jóvenes. Una revisión sistemática. SPORT TK-Revista EuroAmericana de Ciencias del Deporte, 8(2), 43–53. https://doi.org/10.6018/sportk.391741
Número
Sección
Artículos