RESISTENCIA FENOTÍPICA Y GENOTÍPICA EN LOS PATOTIPOS AIEC, STEC Y EAEC DE E. COLI
Resumen
Escherichia coli es una bacteria que está muy presente en nuestro día a día, como comensal o como forma patógena. Hay gran cantidad de cepas patógenas capaces de producir enfermedades, siendo de gran importancia para la salud pública aquellas cepas vehiculadas a través de los alimentos, provocando toxiinfecciones alimentarias con gran morbilidad. En algunos casos, las cepas que provocan estos brotes puedes ser muy patógenas ocasionando una gran mortalidad y con repercusiones muy graves para los afectados. En este estudio nos centramos en investigar la presencia de cepas vehiculadas a través de los alimentos de origen cárnico que formen parte de alguno de los 3 patotipos investigados (STEC, AIEC y EAEC). Por otro lado, planteamos investigar la resistencia a los antibióticos que presentan las cepas de E. coli aisladas en los alimentos cárnicos. Nuestros resultados han evidenciado la elevada resistencia fenotípica que presentan la gran mayoría de las cepas de E. coli aisladas en este estudio, planteando un grave problema para la salud pública. Esto hace necesario extremar las medidas de vigilancia y control de estos patotipos a lo largo de la cadena alimentaria. También es necesario ser cautos en el empleo de antibióticos ya que si se hace un uso inadecuado de los mismos provocaría un aumento en la dificultad terapéutica de las infecciones, amenazando con acabar con un siglo de avances médicos.
Descargas
Citas
Bauer, A. W., Kirby, W. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American journal of clinical pathology, 45(4), 493–496.
Bélanger, L., Garenaux, A., Harel, J., Boulianne, M., Nadeau, E., & Dozois, C. M. (2011). Escherichia coli from animal reservoirs as a potential source of human extraintestinal pathogenic E. coli. FEMS immunology and medical microbiology, 62(1), 1–10. https://doi.org/10.1111/j.1574-695X.2011.00797.x
Bennett, J. E., Md, D. R., & Md, M. B. J. (2019). Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases: 2-Volume Set. En Molecular Mechanisms of Antibiotic Resistance in Bacteria (9th ed., pp. 235–251). Elsevier.
Bryan, A., Youngster, I., & McAdam, A. J. (2015). Shiga Toxin Producing Escherichia coli. Clinics in laboratory medicine, 35(2), 247–272. https://doi.org/10.1016/j.cll.2015.02.004
Canet, Juan José [consultado 16 Mayo 2022]. Escherichia Coli: características, patogenicidad y prevención (I) .Betelgeux, Christeyns food higiene. Disponible en : https://www.betelgeux.es/blog/2016/01/19/escherichia-coli-caracteristicas-patogenicidad-y-prevencion-i/#:~:text=de%20Escherichia%20coli.-,E.,lactosa%20con%20producci%C3%B3n%20de%20gas.
Carrique-Mas, J. J., & Bryant, J. E. (2013). A review of foodborne bacterial and parasitic zoonoses in Vietnam. EcoHealth, 10(4), 465–489. https://doi.org/10.1007/s10393-013-0884-9
Clinical and Laboratory Standards Institute (CLSI) (2020). Performance Standards for Antimicrobial Susceptibility Testing. 30th ed. CLSI supplement M100. Wayne, PA: Clinical and laboratory standards Institute.
Courvalin P. (2008). Predictable and unpredictable evolution of antibiotic resistance. Journal of internal medicine, 264(1), 4–16. https://doi.org/10.1111/j.1365-2796.2008.01940.x
Da Silva, G. J., & Mendonça, N. (2012). Association between antimicrobial resistance and virulence in Escherichia coli. Virulence, 3(1), 18–28. https://doi.org/10.4161/viru.3.1.18382
Darfeuille-Michaud A. (2002). Adherent-invasive Escherichia coli: a putative new E. coli pathotype associated with Crohn's disease. International journal of medical microbiology : IJMM, 292(3-4), 185–193. https://doi.org/10.1078/1438-4221-00201
Doyle, M. & Archer, John & Kaspar, Charles & Weiss, Ronald. (2011). Human Illness Caused by E. coli O157:H7 from Food and Non-food Sources.
Duan, Q., Yao, F., & Zhu, G. (2011). Major virulence factors of enterotoxigenic Escherichia coli in pigs. Annals of Microbiology, 62(1), 7–14. https://doi.org/10.1007/s13213-011-0279-5
E.C.D.P.C. (2022). Surveillance Atlas of Infectious Diseases. European Centre for Disease Prevention and Control. Consultado 16 de mayo de 2022, de https://atlas.ecdc.europa.eu/public/index.aspx?Dataset=27&HealthTopic=4
Ewers, C., Antão, E. M., Diehl, I., Philipp, H. C., & Wieler, L. H. (2009). Intestine and environment of the chicken as reservoirs for extraintestinal pathogenic Escherichia coli strains with zoonotic potential. Applied and environmental microbiology, 75(1), 184–192. https://doi.org/10.1128/AEM.01324-08
Frieri, M., Kumar, K., & Boutin, A. (2017). Antibiotic resistance. Journal of infection and public health, 10(4), 369–378. https://doi.org/10.1016/j.jiph.2016.08.007
Gomes, T. A., Elias, W. P., Scaletsky, I. C., Guth, B. E., Rodrigues, J. F., Piazza, R. M., Ferreira, L. C., & Martinez, M. B. (2016). Diarrheagenic Escherichia coli. Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology], 47 Suppl 1(Suppl 1), 3–30. https://doi.org/10.1016/j.bjm.2016.10.015
Hebbelstrup Jensen, B., Poulsen, A., Hebbelstrup Rye Rasmussen, S., Struve, C., Engberg, J. H., Friis-Møller, A., Boisen, N., Jønsson, R., Petersen, R. F., Petersen, A. M., & Krogfelt, K. A. (2017). Genetic Virulence Profile of Enteroaggregative Escherichia coli Strains Isolated from Danish Children with Either Acute or Persistent Diarrhea. Frontiers in cellular and infection microbiology, 7, 230. https://doi.org/10.3389/fcimb.2017.00230
Irrgang, A., Roschanski, N., Tenhagen, B. A., Grobbel, M., Skladnikiewicz-Ziemer, T., Thomas, K., Roesler, U., & Käsbohrer, A. (2016). Prevalence of mcr-1 in E. coli from Livestock and Food in Germany, 2010-2015. PloS one, 11(7), e0159863. https://doi.org/10.1371/journal.pone.0159863
Jafari, A., Aslani, M. M., & Bouzari, S. (2012). Escherichia coli: a brief review of diarrheagenic pathotypes and their role in diarrheal diseases in Iran. Iranian journal of microbiology, 4(3), 102–117.
Jenkins C. (2018). Enteroaggregative Escherichia coli. Current topics in microbiology and immunology, 416, 27–50. https://doi.org/10.1007/82_2018_105
Jørgensen, S. L., Stegger, M., Kudirkiene, E., Lilje, B., Poulsen, L. L., Ronco, T., Pires Dos Santos, T., Kiil, K., Bisgaard, M., Pedersen, K., Nolan, L. K., Price, L. B., Olsen, R. H., Andersen, P. S., & Christensen, H. (2019). Diversity and Population Overlap between Avian and Human Escherichia coli Belonging to Sequence Type 95. mSphere, 4(1), e00333-18. https://doi.org/10.1128/mSphere.00333-18
Khondker, A., & Rheinstädter, M. C. (2020). How do bacterial membranes resist polymyxin antibiotics?. Communications biology, 3(1), 77. https://doi.org/10.1038/s42003-020-0803-x
Ling, Z., Yin, W., Shen, Z., Wang, Y., Shen, J., & Walsh, T. R. (2020). Epidemiology of mobile colistin resistance genes mcr-1 to mcr-9. The Journal of antimicrobial chemotherapy, 75(11), 3087–3095. https://doi.org/10.1093/jac/dkaa205
Liu, Z., Wang, K., Zhang, Y., Xia, L., Zhao, L., Guo, C., Liu, X., Qin, L., & Hao, Z. (2022). High Prevalence and Diversity Characteristics of blaNDM, mcr, and blaESBLs Harboring Multidrug-Resistant Escherichia coli From Chicken, Pig, and Cattle in China. Frontiers in cellular and infection microbiology, 11, 755545. https://doi.org/10.3389/fcimb.2021.755545
Luo, Y., Luo, R., Ding, H., Ren, X., Luo, H., Zhang, Y., Ye, L., & Cui, S. (2018). Characterization of Carbapenem-Resistant Escherichia coli Isolates Through the Whole-Genome Sequencing Analysis. Microbial drug resistance (Larchmont, N.Y.), 24(2), 175–180. https://doi.org/10.1089/mdr.2017.0079
Machota, S. V., Durán, S. P., & Yanes, E. M. M. (2002). Manual de Microbiología veterinaria. McGraw-Hill Education.
Maravić G. (2004). Macrolide resistance based on the Erm-mediated rRNA methylation. Current drug targets. Infectious disorders, 4(3), 193–202. https://doi.org/10.2174/1568005043340777
Markey, B., Leonard, F., Archambault, M., Cullinane, A., & Maguire, D. (2013). Clinical Veterinary Microbiology - Elsevieron VitalSource (English Edition) (2.a ed.). Mosby Ltd.
McFARLAND, J. (1907b). THE NEPHELOMETER:AN INSTRUMENT FOR ESTIMATING THE NUMBER OF BACTERIA IN SUSPENSIONS USED FOR CALCULATING THE OPSONIC INDEX AND FOR VACCINES. JAMA: The Journal of the American Medical Association, XLIX(14), 1176. https://doi.org/10.1001/jama.1907.25320140022001f
Mellata M. (2013). Human and avian extraintestinal pathogenic Escherichia coli: infections, zoonotic risks, and antibiotic resistance trends. Foodborne pathogens and disease, 10(11), 916–932. https://doi.org/10.1089/fpd.2013.1533
Michel, P., Wilson, J. B., Martin, S. W., Clarke, R. C., McEwen, S. A., & Gyles, C. L. (1999). Temporal and geographical distributions of reported cases of Escherichia coli O157:H7 infection in Ontario. Epidemiology and infection, 122(2), 193–200. https://doi.org/10.1017/s0950268899002083
Moffatt, J. H., Harper, M., & Boyce, J. D. (2019). Mechanisms of Polymyxin Resistance. Advances in experimental medicine and biology, 1145, 55–71. https://doi.org/10.1007/978-3-030-16373-0_5
Mora, A., Herrrera, A., López, C., Dahbi, G., Mamani, R., Pita, J. M., Alonso, M. P., Llovo, J., Bernárdez, M. I., Blanco, J. E., Blanco, M., & Blanco, J. (2011). Characteristics of the Shiga-toxin-producing enteroaggregative Escherichia coli O104:H4 German outbreak strain and of STEC strains isolated in Spain. International microbiology : the official journal of the Spanish Society for Microbiology, 14(3), 121–141. https://doi.org/10.2436/20.1501.01.142
Mora, A., López, C., Dhabi, G., López-Beceiro, A. M., Fidalgo, L. E., Díaz, E. A., Martínez-Carrasco, C., Mamani, R., Herrera, A., Blanco, J. E., Blanco, M., & Blanco, J. (2012). Seropathotypes, Phylogroups, Stx subtypes, and intimin types of wildlife-carried, shiga toxin-producing escherichia coli strains with the same characteristics as human-pathogenic isolates. Applied and environmental microbiology, 78(8), 2578–2585. https://doi.org/10.1128/AEM.07520-11
Munita, J. M., & Arias, C. A. (2016). Mechanisms of Antibiotic Resistance. Microbiology spectrum, 4(2), 10.1128/microbiolspec.VMBF-0016-2015. https://doi.org/10.1128/microbiolspec.VMBF-0016-2015
Nagy, B., & Fekete, P. Z. (1999). Enterotoxigenic Escherichia coli (ETEC) in farm animals. Veterinary research, 30(2-3), 259–284.
Nataro, J. P., & Kaper, J. B. (1998). Diarrheagenic Escherichia coli. Clinical microbiology reviews, 11(1), 142–201. https://doi.org/10.1128/CMR.11.1.142
O.P.S. (2021, 3 marzo). La resistencia antimicrobiana pone en riesgo la salud mundial. OPS/OMS |Organización Panamericana de la Salud. Recuperado 15 de mayo de 2022, de https://www.paho.org/es/noticias/3-3-2021-resistencia-antimicrobiana-pone-riesgo-salud-mundial#:%7E:text=M%C3%A1s%20de%20700%20mil%20muertes,p%C3%A9rdidas%20econ%C3%B3micas%20que%20superar%C3%ADan%20los
Orth, P., Schnappinger, D., Sum, P. E., Ellestad, G. A., Hillen, W., Saenger, W., & Hinrichs, W. (1999). Crystal structure of the tet repressor in complex with a novel tetracycline, 9-(N,N-dimethylglycylamido)- 6-demethyl-6-deoxy-tetracycline. Journal of molecular biology, 285(2), 455–461. https://doi.org/10.1006/jmbi.1998.2290
Osek, J., & Dacko, J. (2001). Development of a PCR-based method for specific identification of genotypic markers of shiga toxin-producing Escherichia coli strains. Journal of veterinary medicine. B, Infectious diseases and veterinary public health, 48(10), 771–778. https://doi.org/10.1046/j.1439-0450.2001.00508.x
Papp-Wallace, K. M., Endimiani, A., Taracila, M. A., & Bonomo, R. A. (2011). Carbapenems: past, present, and future. Antimicrobial agents and chemotherapy, 55(11), 4943–4960. https://doi.org/10.1128/AAC.00296-11
Pires, S. M., Fischer-Walker, C. L., Lanata, C. F., Devleesschauwer, B., Hall, A. J., Kirk, M. D., Duarte, A. S., Black, R. E., & Angulo, F. J. (2015). Aetiology-Specific Estimates of the Global and Regional Incidence and Mortality of Diarrhoeal Diseases Commonly Transmitted through Food. PloS one, 10(12), e0142927. https://doi.org/10.1371/journal.pone.0142927
Poirel, L., Walsh, T. R., Cuvillier, V., & Nordmann, P. (2011). Multiplex PCR for detection of acquired carbapenemase genes. Diagnostic microbiology and infectious disease, 70(1), 119–123. https://doi.org/10.1016/j.diagmicrobio.2010.12.002
Pormohammad, A., Nasiri, M. J., & Azimi, T. (2019). Prevalence of antibiotic resistance in Escherichia coli strains simultaneously isolated from humans, animals, food, and the environment: a systematic review and meta-analysis. Infection and drug resistance, 12, 1181–1197. https://doi.org/10.2147/IDR.S201324
Ramesh, R., Munshi, A., & Panda, S. K. (1992). Polymerase chain reaction. The National medical journal of India, 5(3), 115–119.
Rehman, M. U., Yang, H., Zhang, S., Huang, Y., Zhou, R., Gong, S., Feng, Q., Chen, S., Yang, J., Yang, Z., Abbas, M., Cui, M., Wang, M., Jia, R., Chen, S., Liu, M., Zhu, D., Zhao, X., Wu, Y., Yang, Q., … Cheng, A. (2020). Emergence of Escherichia coli isolates producing NDM-1 carbapenemase from waterfowls in Hainan island, China. Acta tropica, 207, 105485. https://doi.org/10.1016/j.actatropica.2020.105485
Sisay, Mekonnen. (2015). A Review on Major Food Borne Bacterial Illnesses. Journal of Tropical Diseases. 03. 10.4172/2329-891X.1000176.
The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 12.0, 2022. http://www.eucast.org.
Vazeille, E., Chassaing, B., Buisson, A., Dubois, A., de Vallée, A., Billard, E., Neut, C., Bommelaer, G., Colombel, J. F., Barnich, N., Darfeuille-Michaud, A., & Bringer, M. A. (2016). GipA Factor Supports Colonization of Peyer's Patches by Crohn's Disease-associated Escherichia Coli. Inflammatory bowel diseases, 22(1), 68–81. https://doi.org/10.1097/MIB.0000000000000609
Vera-Leiva, A., Barría-Loaiza, C., Carrasco-Anabalón, S., Lima, C., Aguayo-Reyes, A., Domínguez, M., Bello-Toledo, H., & González-Rocha, G. (2017). KPC: Klebsiella pneumoniae carbapenemasa, principal carbapenemasa en enterobacterias [KPC: Klebsiella pneumoniae carbapenemase, main carbapenemase in Enterobacteriaceae]. Revista chilena de infectologia : organo oficial de la Sociedad Chilena de Infectologia, 34(5), 476–484. https://doi.org/10.4067/S0716-10182017000500476
Vlisidou, I., Dziva, F., La Ragione, R. M., Best, A., Garmendia, J., Hawes, P., Monaghan, P., Cawthraw, S. A., Frankel, G., Woodward, M. J., & Stevens, M. P. (2006). Role of intimin-tir interactions and the tir-cytoskeleton coupling protein in the colonization of calves and lambs by Escherichia coli O157:H7. Infection and immunity, 74(1), 758–764. https://doi.org/10.1128/IAI.74.1.758-764.2006
Watahiki, M., Isobe, J., Kimata, K., Shima, T., Kanatani, J., Shimizu, M., Nagata, A., Kawakami, K., Yamada, M., Izumiya, H., Iyoda, S., Morita-Ishihara, T., Mitobe, J., Terajima, J., Ohnishi, M., & Sata, T. (2014). Characterization of enterohemorrhagic Escherichia coli O111 and O157 strains isolated from outbreak patients in Japan. Journal of clinical microbiology, 52(8), 2757–2763. https://doi.org/10.1128/JCM.00420-14
Wellington, E. M., Boxall, A. B., Cross, P., Feil, E. J., Gaze, W. H., Hawkey, P. M., Johnson-Rollings, A. S., Jones, D. L., Lee, N. M., Otten, W., Thomas, C. M., & Williams, A. P. (2013). The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. The Lancet. Infectious diseases, 13(2), 155–165. https://doi.org/10.1016/S1473-3099(12)70317-1
World Health Organization. 2014. Antimicrobial Resistance: Global Report on Surveillance 2014
Yang, S. C., Lin, C. H., Aljuffali, I. A., & Fang, J. Y. (2017). Current pathogenic Escherichia coli foodborne outbreak cases and therapy development. Archives of microbiology, 199(6), 811–825. https://doi.org/10.1007/s00203-017-1393-y
Zhang, J., Chen, L., Wang, J., Yassin, A. K., Butaye, P., Kelly, P., Gong, J., Guo, W., Li, J., Li, M., Yang, F., Feng, Z., Jiang, P., Song, C., Wang, Y., You, J., Yang, Y., Price, S., Qi, K., Kang, Y., … Wang, C. (2018). Molecular detection of colistin resistance genes (mcr-1, mcr-2 and mcr-3) in nasal/oropharyngeal and anal/cloacal swabs from pigs and poultry. Scientific reports, 8(1), 3705. https://doi.org/10.1038/s41598-018-22084-4
Zhang, T., Lu, H., Wang, L., Yin, M., & Yang, L. (2018). Specific expression pattern of IMP metabolism related-genes in chicken muscle between cage and free range conditions. PloS one, 13(8), e0201736. https://doi.org/10.1371/journal.pone.0201736
Derechos de autor 2022 Servicio de Publicaciones, Universidad de Murcia (España)
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Las obras que se publican en esta revista están sujetas a los siguientes términos:
1. El Servicio de Publicaciones de la Universidad de Murcia (la editorial) conserva los derechos patrimoniales (copyright) de las obras publicadas, y favorece y permite la reutilización de las mismas bajo la licencia de uso indicada en el punto 2.
2. Las obras se publican en la edición electrónica de la revista bajo una licencia Reconocimiento-NoComercial-SinObraDerivada 3.0 España (CC BY-NC-ND 3.0 ES). Se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que: i) se cite la autoría y la fuente original de su publicación (revista, editorial y URL de la obra); ii) no se usen para fines comerciales; iii) se mencione la existencia y especificaciones de esta licencia de uso.
3. Condiciones de auto-archivo. Se permite y se anima a los autores a difundir electrónicamente las versiones pre-print (versión antes de ser evaluada) y/o post-print (versión evaluada y aceptada para su publicación) de sus obras antes de su publicación, ya que favorece su circulación y difusión más temprana y con ello un posible aumento en su citación y alcance entre la comunidad académica. Color RoMEO: verde.