PHENOTYPIC AND GENOTYPIC RESISTANCE IN AIEC, STEC AND EAEC PATHOTYPES OF E. COLI
Abstract
Escherichia coli is a bacteria that is very present in our daily life, as a commensal or pathogenic organism. There are a large number of pathogenic strains capable of producing diseases, being of great importance for public health those strains transmitted through food, causing foodborne infections with great morbidity. In some cases, the strains that cause these outbreaks can be highly pathogenic, causing high mortality and very serious health implications for those affected. In this study, we focused on investigating the presence of strains transmitted through food of meat origin that belong to one of the 3 pathotypes investigated (STEC, AIEC and EAEC). On the other hand, we proposed to investigate the antibiotic resistance of E. coli strains isolated from meat foods. Our results showed the high phenotypic resistance of the great majority of E. coli strains isolated in this study, posing a serious problem for public health. This makes it necessary to maximize vigilance and control measures for these pathotypes throughout the food chain. It is also necessary to be cautious in the use of antibiotics, since their inappropriate use would lead to an increase in the therapeutic difficulty of infections, threatening to put an end to a century of medical advances.
Downloads
References
Bauer, A. W., Kirby, W. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American journal of clinical pathology, 45(4), 493–496.
Bélanger, L., Garenaux, A., Harel, J., Boulianne, M., Nadeau, E., & Dozois, C. M. (2011). Escherichia coli from animal reservoirs as a potential source of human extraintestinal pathogenic E. coli. FEMS immunology and medical microbiology, 62(1), 1–10. https://doi.org/10.1111/j.1574-695X.2011.00797.x
Bennett, J. E., Md, D. R., & Md, M. B. J. (2019). Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases: 2-Volume Set. En Molecular Mechanisms of Antibiotic Resistance in Bacteria (9th ed., pp. 235–251). Elsevier.
Bryan, A., Youngster, I., & McAdam, A. J. (2015). Shiga Toxin Producing Escherichia coli. Clinics in laboratory medicine, 35(2), 247–272. https://doi.org/10.1016/j.cll.2015.02.004
Canet, Juan José [consultado 16 Mayo 2022]. Escherichia Coli: características, patogenicidad y prevención (I) .Betelgeux, Christeyns food higiene. Disponible en : https://www.betelgeux.es/blog/2016/01/19/escherichia-coli-caracteristicas-patogenicidad-y-prevencion-i/#:~:text=de%20Escherichia%20coli.-,E.,lactosa%20con%20producci%C3%B3n%20de%20gas.
Carrique-Mas, J. J., & Bryant, J. E. (2013). A review of foodborne bacterial and parasitic zoonoses in Vietnam. EcoHealth, 10(4), 465–489. https://doi.org/10.1007/s10393-013-0884-9
Clinical and Laboratory Standards Institute (CLSI) (2020). Performance Standards for Antimicrobial Susceptibility Testing. 30th ed. CLSI supplement M100. Wayne, PA: Clinical and laboratory standards Institute.
Courvalin P. (2008). Predictable and unpredictable evolution of antibiotic resistance. Journal of internal medicine, 264(1), 4–16. https://doi.org/10.1111/j.1365-2796.2008.01940.x
Da Silva, G. J., & Mendonça, N. (2012). Association between antimicrobial resistance and virulence in Escherichia coli. Virulence, 3(1), 18–28. https://doi.org/10.4161/viru.3.1.18382
Darfeuille-Michaud A. (2002). Adherent-invasive Escherichia coli: a putative new E. coli pathotype associated with Crohn's disease. International journal of medical microbiology : IJMM, 292(3-4), 185–193. https://doi.org/10.1078/1438-4221-00201
Doyle, M. & Archer, John & Kaspar, Charles & Weiss, Ronald. (2011). Human Illness Caused by E. coli O157:H7 from Food and Non-food Sources.
Duan, Q., Yao, F., & Zhu, G. (2011). Major virulence factors of enterotoxigenic Escherichia coli in pigs. Annals of Microbiology, 62(1), 7–14. https://doi.org/10.1007/s13213-011-0279-5
E.C.D.P.C. (2022). Surveillance Atlas of Infectious Diseases. European Centre for Disease Prevention and Control. Consultado 16 de mayo de 2022, de https://atlas.ecdc.europa.eu/public/index.aspx?Dataset=27&HealthTopic=4
Ewers, C., Antão, E. M., Diehl, I., Philipp, H. C., & Wieler, L. H. (2009). Intestine and environment of the chicken as reservoirs for extraintestinal pathogenic Escherichia coli strains with zoonotic potential. Applied and environmental microbiology, 75(1), 184–192. https://doi.org/10.1128/AEM.01324-08
Frieri, M., Kumar, K., & Boutin, A. (2017). Antibiotic resistance. Journal of infection and public health, 10(4), 369–378. https://doi.org/10.1016/j.jiph.2016.08.007
Gomes, T. A., Elias, W. P., Scaletsky, I. C., Guth, B. E., Rodrigues, J. F., Piazza, R. M., Ferreira, L. C., & Martinez, M. B. (2016). Diarrheagenic Escherichia coli. Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology], 47 Suppl 1(Suppl 1), 3–30. https://doi.org/10.1016/j.bjm.2016.10.015
Hebbelstrup Jensen, B., Poulsen, A., Hebbelstrup Rye Rasmussen, S., Struve, C., Engberg, J. H., Friis-Møller, A., Boisen, N., Jønsson, R., Petersen, R. F., Petersen, A. M., & Krogfelt, K. A. (2017). Genetic Virulence Profile of Enteroaggregative Escherichia coli Strains Isolated from Danish Children with Either Acute or Persistent Diarrhea. Frontiers in cellular and infection microbiology, 7, 230. https://doi.org/10.3389/fcimb.2017.00230
Irrgang, A., Roschanski, N., Tenhagen, B. A., Grobbel, M., Skladnikiewicz-Ziemer, T., Thomas, K., Roesler, U., & Käsbohrer, A. (2016). Prevalence of mcr-1 in E. coli from Livestock and Food in Germany, 2010-2015. PloS one, 11(7), e0159863. https://doi.org/10.1371/journal.pone.0159863
Jafari, A., Aslani, M. M., & Bouzari, S. (2012). Escherichia coli: a brief review of diarrheagenic pathotypes and their role in diarrheal diseases in Iran. Iranian journal of microbiology, 4(3), 102–117.
Jenkins C. (2018). Enteroaggregative Escherichia coli. Current topics in microbiology and immunology, 416, 27–50. https://doi.org/10.1007/82_2018_105
Jørgensen, S. L., Stegger, M., Kudirkiene, E., Lilje, B., Poulsen, L. L., Ronco, T., Pires Dos Santos, T., Kiil, K., Bisgaard, M., Pedersen, K., Nolan, L. K., Price, L. B., Olsen, R. H., Andersen, P. S., & Christensen, H. (2019). Diversity and Population Overlap between Avian and Human Escherichia coli Belonging to Sequence Type 95. mSphere, 4(1), e00333-18. https://doi.org/10.1128/mSphere.00333-18
Khondker, A., & Rheinstädter, M. C. (2020). How do bacterial membranes resist polymyxin antibiotics?. Communications biology, 3(1), 77. https://doi.org/10.1038/s42003-020-0803-x
Ling, Z., Yin, W., Shen, Z., Wang, Y., Shen, J., & Walsh, T. R. (2020). Epidemiology of mobile colistin resistance genes mcr-1 to mcr-9. The Journal of antimicrobial chemotherapy, 75(11), 3087–3095. https://doi.org/10.1093/jac/dkaa205
Liu, Z., Wang, K., Zhang, Y., Xia, L., Zhao, L., Guo, C., Liu, X., Qin, L., & Hao, Z. (2022). High Prevalence and Diversity Characteristics of blaNDM, mcr, and blaESBLs Harboring Multidrug-Resistant Escherichia coli From Chicken, Pig, and Cattle in China. Frontiers in cellular and infection microbiology, 11, 755545. https://doi.org/10.3389/fcimb.2021.755545
Luo, Y., Luo, R., Ding, H., Ren, X., Luo, H., Zhang, Y., Ye, L., & Cui, S. (2018). Characterization of Carbapenem-Resistant Escherichia coli Isolates Through the Whole-Genome Sequencing Analysis. Microbial drug resistance (Larchmont, N.Y.), 24(2), 175–180. https://doi.org/10.1089/mdr.2017.0079
Machota, S. V., Durán, S. P., & Yanes, E. M. M. (2002). Manual de Microbiología veterinaria. McGraw-Hill Education.
Maravić G. (2004). Macrolide resistance based on the Erm-mediated rRNA methylation. Current drug targets. Infectious disorders, 4(3), 193–202. https://doi.org/10.2174/1568005043340777
Markey, B., Leonard, F., Archambault, M., Cullinane, A., & Maguire, D. (2013). Clinical Veterinary Microbiology - Elsevieron VitalSource (English Edition) (2.a ed.). Mosby Ltd.
McFARLAND, J. (1907b). THE NEPHELOMETER:AN INSTRUMENT FOR ESTIMATING THE NUMBER OF BACTERIA IN SUSPENSIONS USED FOR CALCULATING THE OPSONIC INDEX AND FOR VACCINES. JAMA: The Journal of the American Medical Association, XLIX(14), 1176. https://doi.org/10.1001/jama.1907.25320140022001f
Mellata M. (2013). Human and avian extraintestinal pathogenic Escherichia coli: infections, zoonotic risks, and antibiotic resistance trends. Foodborne pathogens and disease, 10(11), 916–932. https://doi.org/10.1089/fpd.2013.1533
Michel, P., Wilson, J. B., Martin, S. W., Clarke, R. C., McEwen, S. A., & Gyles, C. L. (1999). Temporal and geographical distributions of reported cases of Escherichia coli O157:H7 infection in Ontario. Epidemiology and infection, 122(2), 193–200. https://doi.org/10.1017/s0950268899002083
Moffatt, J. H., Harper, M., & Boyce, J. D. (2019). Mechanisms of Polymyxin Resistance. Advances in experimental medicine and biology, 1145, 55–71. https://doi.org/10.1007/978-3-030-16373-0_5
Mora, A., Herrrera, A., López, C., Dahbi, G., Mamani, R., Pita, J. M., Alonso, M. P., Llovo, J., Bernárdez, M. I., Blanco, J. E., Blanco, M., & Blanco, J. (2011). Characteristics of the Shiga-toxin-producing enteroaggregative Escherichia coli O104:H4 German outbreak strain and of STEC strains isolated in Spain. International microbiology : the official journal of the Spanish Society for Microbiology, 14(3), 121–141. https://doi.org/10.2436/20.1501.01.142
Mora, A., López, C., Dhabi, G., López-Beceiro, A. M., Fidalgo, L. E., Díaz, E. A., Martínez-Carrasco, C., Mamani, R., Herrera, A., Blanco, J. E., Blanco, M., & Blanco, J. (2012). Seropathotypes, Phylogroups, Stx subtypes, and intimin types of wildlife-carried, shiga toxin-producing escherichia coli strains with the same characteristics as human-pathogenic isolates. Applied and environmental microbiology, 78(8), 2578–2585. https://doi.org/10.1128/AEM.07520-11
Munita, J. M., & Arias, C. A. (2016). Mechanisms of Antibiotic Resistance. Microbiology spectrum, 4(2), 10.1128/microbiolspec.VMBF-0016-2015. https://doi.org/10.1128/microbiolspec.VMBF-0016-2015
Nagy, B., & Fekete, P. Z. (1999). Enterotoxigenic Escherichia coli (ETEC) in farm animals. Veterinary research, 30(2-3), 259–284.
Nataro, J. P., & Kaper, J. B. (1998). Diarrheagenic Escherichia coli. Clinical microbiology reviews, 11(1), 142–201. https://doi.org/10.1128/CMR.11.1.142
O.P.S. (2021, 3 marzo). La resistencia antimicrobiana pone en riesgo la salud mundial. OPS/OMS |Organización Panamericana de la Salud. Recuperado 15 de mayo de 2022, de https://www.paho.org/es/noticias/3-3-2021-resistencia-antimicrobiana-pone-riesgo-salud-mundial#:%7E:text=M%C3%A1s%20de%20700%20mil%20muertes,p%C3%A9rdidas%20econ%C3%B3micas%20que%20superar%C3%ADan%20los
Orth, P., Schnappinger, D., Sum, P. E., Ellestad, G. A., Hillen, W., Saenger, W., & Hinrichs, W. (1999). Crystal structure of the tet repressor in complex with a novel tetracycline, 9-(N,N-dimethylglycylamido)- 6-demethyl-6-deoxy-tetracycline. Journal of molecular biology, 285(2), 455–461. https://doi.org/10.1006/jmbi.1998.2290
Osek, J., & Dacko, J. (2001). Development of a PCR-based method for specific identification of genotypic markers of shiga toxin-producing Escherichia coli strains. Journal of veterinary medicine. B, Infectious diseases and veterinary public health, 48(10), 771–778. https://doi.org/10.1046/j.1439-0450.2001.00508.x
Papp-Wallace, K. M., Endimiani, A., Taracila, M. A., & Bonomo, R. A. (2011). Carbapenems: past, present, and future. Antimicrobial agents and chemotherapy, 55(11), 4943–4960. https://doi.org/10.1128/AAC.00296-11
Pires, S. M., Fischer-Walker, C. L., Lanata, C. F., Devleesschauwer, B., Hall, A. J., Kirk, M. D., Duarte, A. S., Black, R. E., & Angulo, F. J. (2015). Aetiology-Specific Estimates of the Global and Regional Incidence and Mortality of Diarrhoeal Diseases Commonly Transmitted through Food. PloS one, 10(12), e0142927. https://doi.org/10.1371/journal.pone.0142927
Poirel, L., Walsh, T. R., Cuvillier, V., & Nordmann, P. (2011). Multiplex PCR for detection of acquired carbapenemase genes. Diagnostic microbiology and infectious disease, 70(1), 119–123. https://doi.org/10.1016/j.diagmicrobio.2010.12.002
Pormohammad, A., Nasiri, M. J., & Azimi, T. (2019). Prevalence of antibiotic resistance in Escherichia coli strains simultaneously isolated from humans, animals, food, and the environment: a systematic review and meta-analysis. Infection and drug resistance, 12, 1181–1197. https://doi.org/10.2147/IDR.S201324
Ramesh, R., Munshi, A., & Panda, S. K. (1992). Polymerase chain reaction. The National medical journal of India, 5(3), 115–119.
Rehman, M. U., Yang, H., Zhang, S., Huang, Y., Zhou, R., Gong, S., Feng, Q., Chen, S., Yang, J., Yang, Z., Abbas, M., Cui, M., Wang, M., Jia, R., Chen, S., Liu, M., Zhu, D., Zhao, X., Wu, Y., Yang, Q., … Cheng, A. (2020). Emergence of Escherichia coli isolates producing NDM-1 carbapenemase from waterfowls in Hainan island, China. Acta tropica, 207, 105485. https://doi.org/10.1016/j.actatropica.2020.105485
Sisay, Mekonnen. (2015). A Review on Major Food Borne Bacterial Illnesses. Journal of Tropical Diseases. 03. 10.4172/2329-891X.1000176.
The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 12.0, 2022. http://www.eucast.org.
Vazeille, E., Chassaing, B., Buisson, A., Dubois, A., de Vallée, A., Billard, E., Neut, C., Bommelaer, G., Colombel, J. F., Barnich, N., Darfeuille-Michaud, A., & Bringer, M. A. (2016). GipA Factor Supports Colonization of Peyer's Patches by Crohn's Disease-associated Escherichia Coli. Inflammatory bowel diseases, 22(1), 68–81. https://doi.org/10.1097/MIB.0000000000000609
Vera-Leiva, A., Barría-Loaiza, C., Carrasco-Anabalón, S., Lima, C., Aguayo-Reyes, A., Domínguez, M., Bello-Toledo, H., & González-Rocha, G. (2017). KPC: Klebsiella pneumoniae carbapenemasa, principal carbapenemasa en enterobacterias [KPC: Klebsiella pneumoniae carbapenemase, main carbapenemase in Enterobacteriaceae]. Revista chilena de infectologia : organo oficial de la Sociedad Chilena de Infectologia, 34(5), 476–484. https://doi.org/10.4067/S0716-10182017000500476
Vlisidou, I., Dziva, F., La Ragione, R. M., Best, A., Garmendia, J., Hawes, P., Monaghan, P., Cawthraw, S. A., Frankel, G., Woodward, M. J., & Stevens, M. P. (2006). Role of intimin-tir interactions and the tir-cytoskeleton coupling protein in the colonization of calves and lambs by Escherichia coli O157:H7. Infection and immunity, 74(1), 758–764. https://doi.org/10.1128/IAI.74.1.758-764.2006
Watahiki, M., Isobe, J., Kimata, K., Shima, T., Kanatani, J., Shimizu, M., Nagata, A., Kawakami, K., Yamada, M., Izumiya, H., Iyoda, S., Morita-Ishihara, T., Mitobe, J., Terajima, J., Ohnishi, M., & Sata, T. (2014). Characterization of enterohemorrhagic Escherichia coli O111 and O157 strains isolated from outbreak patients in Japan. Journal of clinical microbiology, 52(8), 2757–2763. https://doi.org/10.1128/JCM.00420-14
Wellington, E. M., Boxall, A. B., Cross, P., Feil, E. J., Gaze, W. H., Hawkey, P. M., Johnson-Rollings, A. S., Jones, D. L., Lee, N. M., Otten, W., Thomas, C. M., & Williams, A. P. (2013). The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. The Lancet. Infectious diseases, 13(2), 155–165. https://doi.org/10.1016/S1473-3099(12)70317-1
World Health Organization. 2014. Antimicrobial Resistance: Global Report on Surveillance 2014
Yang, S. C., Lin, C. H., Aljuffali, I. A., & Fang, J. Y. (2017). Current pathogenic Escherichia coli foodborne outbreak cases and therapy development. Archives of microbiology, 199(6), 811–825. https://doi.org/10.1007/s00203-017-1393-y
Zhang, J., Chen, L., Wang, J., Yassin, A. K., Butaye, P., Kelly, P., Gong, J., Guo, W., Li, J., Li, M., Yang, F., Feng, Z., Jiang, P., Song, C., Wang, Y., You, J., Yang, Y., Price, S., Qi, K., Kang, Y., … Wang, C. (2018). Molecular detection of colistin resistance genes (mcr-1, mcr-2 and mcr-3) in nasal/oropharyngeal and anal/cloacal swabs from pigs and poultry. Scientific reports, 8(1), 3705. https://doi.org/10.1038/s41598-018-22084-4
Zhang, T., Lu, H., Wang, L., Yin, M., & Yang, L. (2018). Specific expression pattern of IMP metabolism related-genes in chicken muscle between cage and free range conditions. PloS one, 13(8), e0201736. https://doi.org/10.1371/journal.pone.0201736
Copyright (c) 2022 Servicio de Publicaciones, University of Murcia (Spain)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Creative Commons Attribution 4.0
The works published in this journal are subject to the following terms:
1. The Publications Service of the University of Murcia (the publisher) retains the property rights (copyright) of published works, and encourages and enables the reuse of the same under the license specified in paragraph 2.
© Servicio de Publicaciones, Universidad de Murcia, 2019
2. The works are published in the online edition of the journal under a Creative Commons Attribution-NonCommercial 4.0 (legal text). You can copy, use, distribute, transmit and publicly display, provided that: i) you cite the author and the original source of publication (journal, editorial and URL of the work), ii) are not used for commercial purposes, iii ) mentions the existence and specifications of this license.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
3. Conditions of self-archiving. Is allowed and encouraged the authors to disseminate electronically pre-print versions (version before being evaluated and sent to the journal) and / or post-print (version reviewed and accepted for publication) of their works before publication, as it encourages its earliest circulation and diffusion and thus a possible increase in its citation and scope between the academic community. RoMEO Color: Green.