Optimization of conditions for the production of laccase by Trametes villosa (Sw.) Kreisel and its application in the bio-treatment of sugar cane vinasse
Abstract
Selected conditions for laccase production by Trametes villosa were optimized by surface response methodology: C:N ratio, Cu+2 level (mM), and fermentation time. The crude extract was inoculated on 25% (v/v) diluted sugarcane vinasse and some residual water quality parameters were evaluated. A 2.86-fold increase in the enzymatic activity was obtained upon optimization. Reduction of COD, phenol and color values on the treated vinasse were 46.33%, 73.98% and 52.87% respectively. pH increased from 6.50 to 6.57 and laccase enzymatic activity in vinasse media increased considerably. The advantage of surface respond methodologies for optimization of fermentation conditions is confirmed.
Downloads
References
Agarwal R, Lata S, Gupta M & Singh P. 2010. Removal of melanoidin present in distillery effluent as a major colorant: A review. Journal of Environmental Biology 31 (4): 521-528. Disponible en http://www.jeb.co.in/ journal_issues/201007_jul10/paper_22.pdf (accedido el 15-XII-2019).
Ahmed O, Sulieman AME & Elhardallou SB. 2013. Physicochemical, chemical, and microbiological characteristics of vinasse, a byproduct from ethanol Industry. American Journal of Biochemistry 3(3): 80-83. http://dx.doi.org/10.5923/j.ajb.20130303.03
Aragão M, Menezes DB, Ramos LC, Oliveira HS, Bharagava RN, Ferreira LFR, …Silva DP. 2020. Mycoremediation of vinasse by surface response methodology and preliminary studies in air-lift bioreactors. Chemosphere 244 [9]. https://doi.org/10.1016/j.che mosphere.2019.125432
Arregui L, Ayala M, Gómez-Gil X, Gutiérrez-Soto G, Hernández-Luna CE, Herrera M, …Valdés-Cruz N. 2019. Laccases: structure, function, and potential application in water bioremediation. Microbial Cell Factories 18:(200) [33]. https://doi.org/10.1186/s129 34-019-1248-0
Asgher M, Jamil F & Iqbal HMN. 2012. Bioremediation Potential of Mixed White Rot Culture of Pleurotus Ostreatus IBL-02 and Coriolus Versicolor IBL-04 for Textile Industry Wastewater. Journal of Bioremediation and Biodegradation S1:007. http://dx.doi.org/ 10.4172/21556199.S1-007
AOAC. 2005. Official Methods of Analysis. Washington D.C: Association of Official Analytical Chemists (AOAC).
Aparicio M, De Gracia D, Navarro G, Vega K, González L, Hoffman T, …Miranda M. 2013. Evaluación de la capacidad de crecimiento de cepas nativas de Flaviporus sp. y Trametes villosa en medios complejos preparados con vinazas de destilería. En Memorias del III Congreso de la Sociedad Latinoamericana de Biotecnología Ambiental y Algal (SOLABIAA), Panamá: Imprenta Universitaria de la Universidad Autónoma de Chiriquí. p. 134.
APHA-AWWA-WEF. 2017. Standard Methods for the Examination of Water and Wastewater, 23rd edition. Rice E, Baird R, Eaton A, Clescer L. (eds). Washington D.C: AWWA-APHA-WEF.
Bakkiyaraj S, Aravindan R, Arrivukkarasan S & Viruthagiri T. 2013. Enhanced laccase production by Trametes hirsuta using wheat bran under submerged fermentation. International Journal on Chem Tech Research 5 (3): 1224-1238. Disponible en http://sphinxsai.com/2013/vol_5_3/pdf/CT=18(1224-1238)IPACT.pdf(accedido el 18-XI2019).
Bernats M & Juhna T. 2015. Factors governing degradation of phenol in pharmaceutical wastewater by white-rot fungi: a batch study. The Open Biotechnology Journal 9 (S1-M10): 93-99. http://dx.doi.org /10.2174/1874070701509010093
Bertrand B, Martínez-Morales F & Trejo-Hernández MR. 2013. Fungal laccases: Induction and production. Revista Mexicana de Ingeniería Química 12(3): 473-488. Disponible en http://www.redalyc.org/articulo.oa ?id=62029966010 (accedido el 27-XI-2019).
Bettin F, Montanari Q, Calloni R, Gaio TA, Silveira MM & Dillon AJP. 2014. Additive effects of CuSO4 and aromatic compounds on laccase production by Pleurotus sajor-caju PS-2001 using sucrose as a carbon source. Brazilian Journal of Chemical Engineering 31(2): 335-346. http://dx.doi.org/10.1590/0104-6632. 20140312s00002241
Brijwani K, Huss A & Vadlani P. 2010. Fungal Laccases: Production, Function, and Applications in Food Processing. Enzyme research, volume 2010 [10]. http://dx.doi.org/10.4061/2010/149748
Caballero RE, Miranda M, Jiménez V, González, P & Hofmann T. 2018. Evaluación del crecimiento micelial de Trametes villosa (Sw .) Kreisel en medios suplementados con cobre (II) y vinaza de caña de azúcar. Anales de Biología 40:153-160. http://dx.doi.org/10.6018/analesbio.40.17
Cabrera-Díaz A, Dueñas-Moreno J, Véliz-Lorenzo E, Díaz-Marrero MA, Menéndez-Gutiérrez CL, Oliva-Merencio D…Zaiat I. 2014. Tratamiento combinado de vinaza mediante digestión. Conference Paper. XI Simposio Latinoamericano de Digestión Anaerobia. La Habana.
Chanfón JM & Lorenzo Y. 2014. Alternativas de tratamiento de las vinazas de destilería. experiencias nacionales e internacionales. Revista Centro Azúcar 41(2): 56-67. Disponible en http://centroazucar.uclv. edu.cu/media/articulos/PDF/2014/2/6.pdf (accedido el 10-I-2020).
Christofoletti C, Escher J, Correia J, Marinho, J & Fontanetti C. 2013. Sugarcane vinasse: Environmental implications of its use. Waste management 33: 2752-2761. http://dx.doi.org/10.1016/j.wasman. 2013.09
De Gracia D & Navarro G. 2013. Efecto de las condiciones fisicoquímicas de cultivo sobre la actividad enzimática de la lacasa secretada por Trametes villosa cultivada en medios con vinazas. Chiriquí, Panamá: Universidad Autónoma de Chiriquí. Tesis de Licenciatura.
Deshmukh R, Khardenavis AA & Purohit HJ. 2016. Diverse Metabolic Capacities of Fungi for Bioremediation. Indian Journal of Microbiology 56(3): 247-264. https://dx.doi.org/10.1007/s12088-016-0584-6
Ellouze M & Sayadi S. 2016. White-Rot Fungi and their Enzymes as a Biotechnological Tool for Xenobiotic Bioremediation. En Management of Hazardous Wastes (El-Din M & Saleh H, eds.). London: Intech Open Limited, pp. 103-120. http://dx.doi.org/ 10.5772/64145
Elsayed MA, Hassan MM, Elshafei AM, Haroun BM & Othman AM. 2012. Optimization of Cultural and Nutritional Parameters for the Production of Laccase by Pleurotus ostreatus ARC280. British Biotechnology Journal 2(3): 115-132. http://dx.doi.org/10.9734/BBJ/2012/1305
España-Gamboa E, Vicent T, Font X, DomínguezMaldonado J, Canto-Canché B, & Alzate-Gaviria L. 2016. Pretreatment of vinasse from the sugar refinery industry under non-sterile conditions by Trametes versicolor in a fluidized bed bioreactor and its effect when coupled to an UASB reactor. Journal of Biological Engineering 11(1): 1-11. https://dx.doi. org/10.1186/s13036-016-0042-3
España-Gamboa E, Vicent T, Font X, MijangosCortés J, CantoCanché B & Alzate-Gaviria L. 2015. Phenol and color removal in hydrous ethanol vinasse in an airpulsed bioreactor using Trametes versicolor. Journal of Biochemical Technology 6(3): 982-986. Disponible en https://jbiochemtech.com/en/article/ phenol-andcolor-removal-in-hydrous-ethanol-vinass e-in-anair-pulsed-bioreactor-using-trametes-versicol or (accedido el 15-I-2020).
Ferreira LFR, Lopez AMQ, Monteiro RTR, Ruzne DS, Silva DP. 2013. Biodegradation of vinasse: fungal lignolytic enzymes and their application in the bioethanol industry. En Fungal enzymes (Polizeli MLTM & Rai M, eds.). Boca Raton Florida: CRC Press, pp. 65-93
Gaceta Oficial Digital. 2019.. Descarga de Efluentes Líquidos a Cuerpos y Masas de Aguas Continentales y Marinas. ReglamentoTécnico DGNTI-COPANIT 35-2019, Medio Ambiente, Proteccion de la Salud, Seguridad y Calidad del Agua. Disponible en https://www.gacetaoficial.gob.pa/pdfTemp/28806_B/GacetaNo_28806b_20190628.pdf (accedido el 25-VIII-2019).
Gutiérrez-Soto G, Medina-González GE, Treviño-Ramírez JE & Hernández-Luna CE. 2015. Native macrofungi that produce lignin-modifying enzymes, cellulases, and xylanases with potential biotechnological applications. BioResources 10: 6676-6689. http://dx.doi.org/10.15376/biores.10.4.6676- 6689
Harms H, Schlosser D & Wick LY. 2011. Untapped potential: Exploiting fungi in bioremediation of hazardous chemicals. Nature Reviews Microbiology 9(3): 177-192. https://dx.doi.org/10.1038/nrmicro2519Har
Jiménez-Careaga MG. 2015. Superficies de Respuesta mediante un Diseño Central Compuesto. Revista Varianza 31. Disponible en http://www.revistas bolivianas.org.bo/scielo.php?script=sci_arttext&pid= S9876-67892015000100007&lng=es&nrm=iso (accedido el 3-VII-2019).
Junior JA, Vieira YA, Cruz IA, da Silva Vilar D, Aguiar MM, Torres NH, …Ferreira LFR. 2020. Sequential degradation of raw vinasse by a laccase enzyme producing fungus Pleurotus sajor-caju and its ATPS purification. Biotechnology. Reports. 25: e0041 [8] https://doi.org/10.1016/jbtre.2019.e00411
Kayembe K, Basosila L,Mpiana PT,Sikulisimwa PC, Mbuyu K. 2013. Inhibitory Effects of phenolic monomers on methanogenesis in anaerobic digestion. British Microbiology Research Journal 3(1): 32-41. https://doi.org/10.9734/BMRJ/2013/2291
Kharayat Y. 2012. Distillery wastewater: bioremediation approaches. Journal of Integrative Environmental Sciences 9(2): 69-91. https://dx.doi.org/10.1080/194 3815X.201- 2.688056
Kumar NS & Thankamani V. 2016. Biodegradation of Distillery Melanoidins By a Novel Fungus in Optimized Medium. International Journal of Scientific & Engineering Research 7(8): 532-538. Disponible en https://www.ijser.org/researchpaper/BIODEGRADA TION-OF-DISTILLERY-MELANOIDINSBY-A-NOVE L-FUNGUS-IN-OPTIMIZEDMEDIUM.pdf (accedido el 3-XII-2019).
Lacina C, Germain G & Spiros A. 2003. Utilization of fungi for biotreatment of raw wastewaters. African Journal of Biotechnology 2(12): 620-630. https://dx. doi.org/10.5897/AJB2003.000-1116
Machado KMG, Matheus DR & Bononi VLR. (2005). Ligninolytic enzymes production and Remazol Brilliant Blue R decolorization by tropical Brazilian basidiomycetes fungi. Brazilian Journal of Microbiology, 36(3): 246-252. https://dx.doi.org/10.1590/S1517-8 3822005000300008
Madhavi V & Lele SS. 2009. Laccase properties and applications. BioResources 4(4): 1694-1717. Disponible en https://bioresources.cnr.ncsu.edu/BioRes_04/BioR es_04_ 4 _ 1694 _Madhavi_Lele_ Laccase_ Properties_Applications_Review_567.pdf (accedido el 17- VIII-2019).
Mikucka W & Zielińska M. 2020. Distillery Stillage: Characteristics,Treatment, and Valorization. Applied Biochemistry and Biotechnology 192: 770-793 https:// doi.org/10.1007/s12010-020-03343-5
Mohamad SA, Awang MR, Rashid RA, Ling LS, Daud F, Hammid AA,…..Yussof WMW. 2015. Optimization of Mycelial Biomass Production in Submerged Culture Fermentation of Pleurotus flabellatus Using Response Surface Methodology. Advances in Bioscience and Biotechnology 6: 419-426. http://dx.doi. org/10.4236/abb.2015.66041
Montoya S & Levin L. 2015. Production of lignocellulolytic enzymes from three white-rot fungi by solid-state fermentation and mathematical modeling. African Journal of Biotechnology 14: 1304-1317. http://dx.doi.org/10.5897/AJB2014.14331
Moran-Salazar RG, Sanchez-Lizarraga AL, Rodriguez-Campos J, Davila-Vazquez G, MarinoMarmolejo EN, Dendooven L & Contreras-Ramos SM. 2016. Utilization of vinasses as soil amendment: consequences and perspectives. Springer Plus 5(1): [11] https://dx.doi.org/10.1186/s40064-016-2410-3
Pakshirajan K & Radhika P. 2013. Enzymatic Decolourization of Textile Dyeing Wastewater by the White Rot Fungus Phanerochaete Chrysosporium. Textiles and Light Industrial Science and Technology 2(1): 42-48. Disponible en https://archive.org/details/ TLIST10022/mode/2up (accedido el 12-VIII-2019).
Palmieri G, Giardina P, Bianco C, Scaloni A, Capasso A & Sannia G. 1998. A Novel White Laccase from Pleurotus ostreatus. The Journal of Biological Chemistry 272: 31301-31307. https://dx.doi.org/10. 1074/jbc.272.50.31301
Piscitelli A, Giardina P, Lettera V, Pezzella C, Sannia G & Faraco V. 2011. Induction and transcriptional regulation of laccases in fungi. Current genomics 12(2): 104-112. https://dx.doi.org/10.2174/1389202117955 64331
Rajasundari K & Murugesan R. 2011. Decolourization of Distillery Waste Water - Role of Microbes and Their Potential Oxidative Enzymes. Journal of Applied, Environmental and Biological Sciences 1(4) 54-68. Disponible en http://www.textroad.com/JAEBS-April%202011.html (accedido el 7-III-2020).
Rodrigues CE & Hu B. 2017. Vinasse from Sugarcane Ethanol Production: Better Treatment or Better Utilization? Frontiers in Energy Research. 5:[7]. https:// dx.doi.org/10.3389/fenrg.2017.00007
Saglam N, Yesilada O, Saglam S, Apohan E, Sam M, & İlk S, ……Ekrem G. 2018. Bioremediation Applications with Fungi. En Mycoremediation and Environmetal Sustainability (Prasad R, ed.). Cham, Suiza: Springer, pp. 1-37. https://dx.doi.org/10.1007/978-3-319-77386-5_1
Selvam K, Priya M, Yamuna M. 2012. Decolourization of azo dyes and dye industry effluents by lignin degrading fungus Trametes versicolor. International Journal of Pharmaceutical & Biological Archives 3(3): 666-672. Disponible en: http://www.ijpba.info/ijpba/ index. php/ijpba/article/view/696 (accedido el 6- XII-2019).
Silva MLC, Souza,VB, Santos VS, Kamida HM, Vasconcellos-Neto JRT, Góes-Neto A & Koblitz MGB. 2014. Production of Manganese Peroxidase by Trametes villosa on Unexpensive Substrate and Its Application in the Removal of Lignin from Agricultural Wastes. Advances in Bioscience and Biotechnology 5: 1067-1077. http://dx.doi.org/10.4236/abb.2014.514122
Shraddha, Shekher R, Sehgal S, Kamthania M & Kumar A. 2011. Laccase: Microbial sources, production, purification, and potential biotechnological applications. Enzyme Research 2011: 2011:[11] http://dx. doi.org/ 10.4061/2011/217861
Si J & Cui B. 2013. Dye Congo Red adsorptive decolorization by adsorbents obtained from Trametes pubescens pellets. Desalination and Water Treatment 51:. 7088-7100. http://dx.doi.org/10.1080/19443994. 2013.792445
Strong PJ. 2011. Improved laccase production by Trametes pubescens MB89 in distillery wastewaters. Hindawi Volume 2011: [8]. http://dx.doi.org/10.4061/ 2011/ 379176
Tapia-Tussell R, Pérez-Brito D, Torres-Calzada C, Cortés-Velázquez A, Alzate-Gaviria, L, ChabléVillacís R & Solís-Pereira S. 2015. Laccase gene expression and vinasse biodegradation by Trametes hirsuta strain Bm-2. Molecules 20(8): 15147-15157. https://dx.doi.org/10.3390/molecules200815147
Tapie WA. 2015. Evaluacion in vitro del tratamiento de la vinaza de caña de azucar con Pleurotus ostreatus en produccion animal. Palmira, Colombia: Universidad Nacional de Colombia. Tesis de maestría. Disponible en http://www.bdigital.unal.edu.co/47980/ (accedido el 12-I-2020).
Vilar DS, Carvalho GO, Pupo MMS, Aguiar MM, Torres NH, Américo JHP, Ferreira LFR. 2018. Vinasse degradation using Pleurotus sajor-caju in a combined biological-electrochemical oxidation treatment. Separation and Purification Technology 192: 287-296. https://dx.doi.org/10.1016/j.seppur.2017.10.017
Viswanath B, Rajesh B, Janardham A, Praven A, & Narasimha T. 2014. Fungal laccases and their application in bioremediation. Hindawi Publishing Corporation, volume 2014: [21]. http://dx.doi.org/10. 1155/2014/163242
Wang Q, Qian Y, Ma Y, Zhu C. 2018. A Preliminary Study on the Newly Isolated High Laccase-producing Fungi: Screening, Strain Characteristics and Induction of Laccase Production. Open Life Sciences 13: 463-469. https://doi.org/10.1515/biol-2018-0055
Wang Y, Shao Y, Zou X, Yang M & Guo L. 2018. Synergistic action between extracellular products from white-rot fungus and cellulase significantly improves enzymatic hydrolysis. Bioengineered 9(1): 178-185. https://dx.doi.org/10.1080/21655979.2017.1308991
Warda EA, Abeer AAEA, Eman RH, Mahmoud A. S & Ahmed IE-D. 2016. Applications of Plackett- Burman and Central Composite Design for the Optimization of Novel Brevundimonas diminuta KT277492 Chitinase Production, Investigation of its Antifungal Activity. Brazilian Archives of Biology and Technology 59: [14]. https://dx.doi.org/10.1590/1678-4324- 2016160245
Wehaidy HR, El-Hennawi HM, Ahmed SA, AbdelNaby MA. 2018. Comparative study on crude and partially purified laccase from Polyporus durus ATCC 26726 in the decolorization of textile dyes and wastewater treatment. Egyptian Pharmaceutical Journal 17:94-103. https://dx.doi.org/10.4103/epj.epj_2_18
Wu J-Z, Cheung P, Wong Ka-H & Huang N. 2004. Studies on submerged fermentation of Pleurotus tuber-regium (Fr.) Singer. Part 2: Effect of carbonto-nitrogen ratio of the culture medium on the content and composition of the mycelial dietary fibre. Food Chemistry 85: 101-105. https://dx.doi.org/10.1016/j.foodchem.2003.06.009
Yamanaka R, Soares CF, Matheus DR & Machado KMG. 2008. Lignolytic enzymes produced by Trametes villosa CCB176 under different culture conditions. Brazilian Journal of Microbiology 39(1): 78-84. https://doi.org/10.1590/S1517-83822008000 100019
Yang J, Li W, Ng TB, Deng X, Lin J & Ye X. 2017. Laccases: Production, Expression Regulation, and Applications in Pharmaceutical Biodegradation. Frontiers in microbiology 8: 832. https://dx.doi.org/10.338 9/fmicb.2017.00832
Zhang Y, Sun S, Hu K, & Lin X. 2012. Improving production of laccase from novel basidiomycete with response surface methodology. African Journal of Biotechnology, 11(27): 7009-7015. https://dx.doi.org/10. 5897/AJB11.3615
Zhu C, Bao G & Huang S. 2016. Optimization of laccase production in the white-rot fungus Pleurotus ostreatus (ACCC 52857) induced through yeast extract and copper. Biotechnology & Biotechnological Equipment. 30: 270-276. https://dx.doi.org/10.1080/ 13102818.2015.1135081
Copyright (c) 2021 Anales de Biología
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Las obras que se publican en esta revista están sujetas a los siguientes términos:
1. El Servicio de Publicaciones de la Universidad de Murcia (la editorial) conserva los derechos patrimoniales (copyright) de las obras publicadas, y favorece y permite la reutilización de las mismas bajo la licencia de uso indicada en el punto 2.
2. Las obras se publican en la edición electrónica de la revista bajo una licencia Creative Commons Reconocimiento-NoComercial-SinObraDerivada 3.0 España (texto legal). Se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que: i) se cite la autoría y la fuente original de su publicación (revista, editorial y URL de la obra); ii) no se usen para fines comerciales; iii) se mencione la existencia y especificaciones de esta licencia de uso.
3. Condiciones de auto-archivo. Se permite y se anima a los autores a difundir electrónicamente las versiones pre-print (versión antes de ser evaluada) y/o post-print (versión evaluada y aceptada para su publicación) de sus obras antes de su publicación, ya que favorece su circulación y difusión más temprana y con ello un posible aumento en su citación y alcance entre la comunidad académica. Color RoMEO: verde.