TRANSFERENCIA NUCLEAR DE CÉLULAS SOMÁTICAS INTERESPECIE EN FÉLIDOS SALVAJES: UNA REVISIÓN SISTEMÁTICA Y METAANÁLISIS
Resumen
El objetivo de este trabajo fue realizar una revisión sistemática sobre la transferencia nuclear de células somáticas de félidos salvajes utilizando ovocitos maduros de gato doméstico (Felis catus). Además, se realizaron dos metaanálisis con el programa Comprehensive Meta-Analysis V4 para evaluar el efecto de la transferencia nuclear de células somáticas interespecie (TNCSi) en la división embrionaria y formación de blastocisto en comparación con la técnica intraespecie con células somáticas y ovocitos de gato (TNCSg-g). El metaanálisis se realizó con un modelo aleatorio y el tamaño del efecto se determinó mediante el riesgo relativo (RR). En la revisión sistemática se seleccionaron 16 artículos científicos de un total de 248 y 3230 referencias iniciales en PubMed y ScienceDirect, respectivamente. Los artículos publicaban tasas de división embrionaria del 27.5% al 96.7% y una tasa máxima de formación de blastocisto del 41.5%. Solo 2 de los 8 artículos obtuvieron descendencia viva, con una eficiencia del 1% aproximadamente sobre el total de embriones transferidos. El riesgo de sesgo de los 10 artículos seleccionados para el metaanálisis fue bajo. No se encontraron diferencias significativas (p>0.05) en la división embrionaria entre la TNCSi y la TNCSg-g. Sin embargo, se observó una menor (p=0.016; RR=0.4) probabilidad de formación de blastocistos en el grupo experimental de TNCSi en comparación con la TNCSg-g. En conclusión, la bibliografía sobre TNCSi en félidos salvajes es escasa y estudia especies muy distintas, lo que dificulta los metaanálisis. Aunque la división embrionaria hasta el estadio de 2-4 células es similar en la TNCSi y la TNCSg-g, la formación de blastocisto es menor cuando la célula somática es de una especie de félido distinta al gato.
Descargas
Citas
Beyhan, Z., Iager, A. E., & Cibelli, J. B. (2007). Interspecies nuclear transfer: implications for embryonic stem cell biology. Cell Stem Cell, 1(5), 502–512.
Borges, A. A., & Pereira, A. F. (2019). Potential role of intraspecific and interspecific cloning in the conservation of wild mammals. Zygote (Cambridge, England), 27(3), 111–117.
Cordova, A., King, W. A., & Mastromonaco, G. F. (2017). Choosing a culture medium for SCNT and iSCNT reconstructed embryos: from domestic to wildlife species. Journal of Animal Science and Technology, 59, 24.
Folch, J., Cocero, M. J., Chesné, P., Alabart, J. L., Domínguez, V., Cognié, Y., Roche, A., Fernández-Arias, A., Martí, J. I., Sánchez, P., Echegoyen, E., Beckers, J. F., Bonastre, A. S., & Vignon, X. (2009). First birth of an animal from an extinct subspecies (Capra pyrenaica pyrenaica) by cloning. Theriogenology, 71(6), 1026–1034.
Galli, C., & Lazzari, G. (2021). Current applications of SCNT in advanced breeding and genome editing in livestock. Reproduction, 162(1), 23-32.
Goeritz, F., Painer, J., Jewgenow, K., Hermes, R., Rasmussen, K., Dehnhard, M., & Hildebrandt, T. (2012). Embryo retrieval after hormonal treatment to control ovarian function and non-surgical artificial insemination in African lions (Panthera leo). Reproduction in domestic animals, 47(6), 156–160.
Gómez, M. C., Biancardi, M. N., Jenkins, J. A., Dumas, C., Galiguis, J., Wang, G., & Earle Pope, C. (2012). Scriptaid and 5-aza-2'deoxycytidine enhanced expression of pluripotent genes and in vitro developmental competence in interspecies black-footed cat cloned embryos. Reproduction in Domestic Animals, 47(6), 130-135.
Gómez, M. C., Jenkins, J. A., Giraldo, A., Harris, R. F., King, A., Dresser, B. L., & Pope, C. E. (2003). Nuclear transfer of synchronized African wild cat somatic cells into enucleated domestic cat oocytes. Biology of Reproduction, 69(3), 1032-1041.
Gómez, M. C., Pope, C. E., & Dresser, B. L. (2006). Nuclear transfer in cats and its application. Theriogenology, 66(1), 72-81.
Gómez, M. C., Pope, C. E., Biancardi, M. N., Dumas, C., Galiguis, J., Morris, A. C., Wang, G., & Dresser, B. L. (2011). Trichostatin A modified histone covalent pattern and enhanced expression of pluripotent genes in interspecies black-footed cat cloned embryos but did not improve in vitro and in vivo viability. Cell Reprogramming, 13(4), 315-329.
Gómez, M. C., Pope, C. E., Giraldo, A., Lyons, L. A., Harris, R. F., King, A. L., Cole, A., Godke, R. A., & Dresser, B. L. (2004). Birth of African Wildcat cloned kittens born from domestic cats. Cloning and Stem Cells, 6(3), 247-258.
Gómez, M. C., Pope, C. E., Kutner, R. H., Ricks, D. M., Lyons, L. A., Ruhe, M., Dumas, C., Lyons, J., López, M., Dresser, B. L., & Reiser, J. (2008). Nuclear transfer of sand cat cells into enucleated domestic cat oocytes is affected by cryopreservation of donor cells. Cloning and Stem Cells, 10(4), 469-483.
Herrick, J. R., Campbell, M., Levens, G., Moore, T., Benson, K., D'Agostino, J., West, G., Okeson, D. M., Coke, R., Portacio, S. C., Leiske, K., Kreider, C., Polumbo, P. J., & Swanson, W. F. (2010). In vitro fertilization and sperm cryopreservation in the black-footed cat (Felis nigripes) and sand cat (Felis margarita). Biology of reproduction, 82(3), 552–562.
Higgins, J. P. T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M. J., & Welch, V. A. (2022). Cochrane Handbook for Systematic Reviews of Interventions Version 6.3 (Updated February 2022). Cochrane.
Hoffert, K. A., Anderson, G. B., Wildt, D. E., & Roth, T. L. (1997). Transition from maternal to embryonic control of development in IVM/IVF domestic cat embryos. Molecular reproduction and development, 48(2), 208–215.
Holt, W. V., Pickard, A. R., & Prather, R. S. (2004). Wildlife conservation and reproductive cloning. Reproduction (Cambridge, England), 127(3), 317–324.
Howard, J. G., Lynch, C., Santymire, R. M., Marinari, P. E., & Wildt, D. E. (2016). Recovery of gene diversity using long-term cryopreserved spermatozoa and artificial insemination in the endangered black-footed ferret. Animal Conservation, 19(2), 102-111.
Imsoonthornruksa, S., Sangmalee, A., Srirattana, K., Parnpai, R., & Ketudat-Cairns, M. (2012). Development of intergeneric and intrageneric somatic cell nuclear transfer (SCNT) cat embryos and the determination of telomere length in cloned offspring. Cell Reprogramming, 14(1), 79-87.
IUCN. (2022). The IUCN Red List of Threatened Species. Version 2022-2. https://www.iucnredlist.org.
Kitiyanant, Y., Saikhun, J., & Pavasuthipaisit, K. (2003). Somatic cell nuclear transfer in domestic cat oocytes treated with IGF-I for in vitro maturation. Theriogenology, 59(8), 1775–1786.
Lee, H. S., Yu, X. F., Bang, J. I., Cho, S. J., Deb, G. K., Kim, B. W., & Kong, I. K. (2010). Enhanced histone acetylation in somatic cells induced by a histone deacetylase inhibitor improved inter-generic cloned leopard cat blastocysts. Theriogenology, 74(8), 1439-1449.
León-Quinto, T., Simón, M. A., Cadenas, R., Jones, J., Martínez-Hernández, F. J., Moreno, J. M., Vargas, A., Martínez, F., & Soria, B. (2009). Developing biological resource banks as a supporting tool for wildlife reproduction and conservation: The Iberian lynx bank as a model for other endangered species. Animal Reproduction Science, 112(3-4), 347-361.
Loi, P., Modlinski, J. A., & Ptak, G. (2011). Interspecies somatic cell nuclear transfer: a salvage tool seeking first aid. Theriogenology, 76(2), 217-228.
Loi, P., Ptak, G., Barboni, B., Fulka, J. J. R., Cappai, P., & Clinton, M. (2001). Genetic rescue of an endangered mammal by cross-species nuclear transfer using post-mortem somatic cells. Nature Biotechnology, 19, 962–964.
Mastromonaco, G. F., & King, W. A. (2007). Cloning in companion animal, non-domestic and endangered species: Can the technology become a practical reality? Reproduction, Fertility and Development, 19, 748-758
Memili, E., & First, N. L. (2000). Zygotic and embryonic gene expression in cow: a review of timing and mechanisms of early gene expression as compared with other species. Zygote (Cambridge, England), 8(1), 87–96.
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., Altman, D., Antes, G., Atkins, D., Barbour, V., Barrowman, N., Berlin, J. A., Clark, J., Clarke, M., Cook, D., D’Amico, R., Deeks, J. J., Devereaux, P. J., Dickersin, K., Egger, M., Ernst, E., ... Tugwell, P. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7).
Moro, L. N., Hiriart, M. I., Buemo, C., Jarazo, J., Sestelo, A., Veraguas, D., ... & Stover, J. (2015)a. Cheetah interspecific SCNT followed by embryo aggregation improves in vitro development but not pluripotent gene expression. Reproduction, 150(1), 1-10.
Moro, L. N., Jarazo, J., Buemo, C., Hiriart, M. I., Sestelo, A., & Salamone, D. F. (2015)b. Tiger, Bengal and Domestic Cat Embryos Produced by Homospecific and Interspecific Zona-Free Nuclear Transfer. Reproduction in Domestic Animals, 50(5), 849–857.
Moulavi, F., Hosseini, S. M., Tanhaie-Vash, N., Ostadhosseini, S., Hosseini, S. H., Hajinasrollah, M., Asghari MH, Gourabi H, Shahverdi A, Vosough AD., Nasr-Esfahani, M. H. (2017). Interspecies somatic cell nuclear transfer in Asiatic cheetah using nuclei derived from post-mortem frozen tissue in absence of cryo-protectant and in vitro matured domestic cat oocytes. Theriogenology, 90, 197-203.
Mrowiec, A., Waleń, M., Łukaszuk, K., & Smorąg, Z. (2020). Mitochondrial DNA Replication Disorders and Cancer: Epigenetic Regulation of MUT-Related Genes in Carcinogenesis. International Journal of Molecular Sciences, 21(7), 2524.
Seaby, R. P., Alexander, B., King, W. A., & Mastromonaco, G. F. (2013). In vitro development of bison embryos using interspecies somatic cell nuclear transfer. Reprod Domest Anim, 48(6), 881–887.
Shahverdi, M., Akbarinejad, V., Dalman, A., Hajinasrollah, M., Vodjgani, M., Tanhaei Vash, N., Nasr-Esfahani, M. H., & Eftekhari-Yazdi, P. (2022). Effect of Mechanical Micro-Vibrations on The Efficiency of Leopard Inter-Species Somatic Cell Nuclear Transfer. Cell Journal, 24(10), 612-619.
Spindler, R. E., Crichton, E. G., Agca, Y., Loskutoff, N., Critser, J., Gardner, D. K., & Wildt, D. E. (2006). Improved felid embryo development by group culture is maintained with heterospecific companions. Theriogenology, 66(1), 82–92.
Takeda, K., Akagi, S., Kaneyama, K., Kojima, T., Takahashi, S., Imai, H., Yamanaka, M., Onishi, A., & Hanada, H. (2003). Proliferation of donor mitochondrial DNA in nuclear transfer calves (Bos taurus) derived from cumulus cells. Molecular Reproduction and Development, 64(4), 429–437.
Thongphakdee, A., Numchaisrika, P., Omsongkram, S., Chatdarong, K., Kamolnorranath, S., Dumnui, S., & Techakumphu, M. (2006). In vitro development of marbled cat embryos derived from interspecies somatic cell nuclear transfer. Reproduction in Domestic Animals, 41(3), 219-226.
Thongphakdee, A., Siriaroonrat, B., Manee-in, S., Klincumhom, N., Kamolnorranath, S., Chatdarong, K., & Techakumphu, M. (2010). Intergeneric somatic cell nucleus transfer in marbled cat and flat-headed cat. Theriogenology, 73(1), 120-128.
Thongphakdee, A., Sukparangsi, W., Comizzoli, P., & Chatdarong, K. (2020). Reproductive biology and biotechnologies in wild felids. Theriogenology, 150, 360-373.
Trounson A. (2001). Nucler transfer in human medicine and animal breeding. Reproduction, fertility, and development, 13(1), 31–39.
Veraguas, D., Aguilera, C., Echeverry, D., Saez-Ruiz, D., Castro, F. O., & Rodriguez-Alvarez, L. (2020). Embryo aggregation allows the production of kodkod (Leopardus guigna) blastocysts after interspecific SCNT. Theriogenology, 158, 148-157.
Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., & Campbell, K. H. S. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature, 385(6619), 810-813.
Yamochi, T., Kida, Y., Oh, N., Ohta, S., Amano, T., Anzai, M., ... & Niwa, K. (2013). Development of interspecies cloned embryos reconstructed with rabbit (Oryctolagus cuniculus) oocytes and cynomolgus monkey (Macaca fascicularis) fibroblast cell nuclei. Zygote, 21(4), 358–366.
Yin, X. J., Lee, Y., Lee, H., Kim, N., Kim, L., Shin, H., & Kong, I. (2006)a. In vitro production and initiation of pregnancies in inter-genus nuclear transfer embryos derived from leopard cat (Prionailurus bengalensis) nuclei fused with domestic cat (Felis silverstris catus) enucleated oocytes. Theriogenology, 66(2), 275-282.
Yin, X. J., Lee, Y. H., Jin, J. Y., Kim, N. H., & Kong, I. K. (2006)b. Nuclear and microtubule remodeling and in vitro development of nuclear transferred cat oocytes with skin fibroblasts of the domestic cat (Felis silvestris catus) and leopard cat (Prionailurus bengalensis). Animal Reproduction Science, 95(3-4), 307-315.
Zuo, Y., Su, G., Cheng, L., Liu, K., Feng, Y., Wei, Z., Bai, C., Cao, G., & Li, G. (2017). Coexpression analysis identifies nuclear reprogramming barriers of somatic cell nuclear transfer embryos. Oncotarget, 8(39), 65847–65859.
Derechos de autor 2023 Servicio de Publicaciones, Universidad de Murcia (España)
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Las obras que se publican en esta revista están sujetas a los siguientes términos:
1. El Servicio de Publicaciones de la Universidad de Murcia (la editorial) conserva los derechos patrimoniales (copyright) de las obras publicadas, y favorece y permite la reutilización de las mismas bajo la licencia de uso indicada en el punto 2.
2. Las obras se publican en la edición electrónica de la revista bajo una licencia Reconocimiento-NoComercial-SinObraDerivada 3.0 España (CC BY-NC-ND 3.0 ES). Se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que: i) se cite la autoría y la fuente original de su publicación (revista, editorial y URL de la obra); ii) no se usen para fines comerciales; iii) se mencione la existencia y especificaciones de esta licencia de uso.
3. Condiciones de auto-archivo. Se permite y se anima a los autores a difundir electrónicamente las versiones pre-print (versión antes de ser evaluada) y/o post-print (versión evaluada y aceptada para su publicación) de sus obras antes de su publicación, ya que favorece su circulación y difusión más temprana y con ello un posible aumento en su citación y alcance entre la comunidad académica. Color RoMEO: verde.