PRODUCTION OF MEAT ANALOGUES BY HIGH HUMIDITY EXTRUSION PROCESS FROM BEAN PROTEIN ISOLATE AND WHOLE WHEAT BRAN

Authors

  • Marta Martínez López Departamento de Tecnología de Alimentos, Facultad de Veterinaria, Universidad de Murcia.
  • Macarena Egea Clemenz Departamento de Tecnología de Alimentos, Facultad de Veterinaria, Universidad de Murcia.
DOI: https://doi.org/10.6018/analesvet.634091
Keywords: Vicia faba, Meat subtitutes, Vegetable protein, Dietary fibre, Extrusion technology

Abstract

Interest in healthy eating has grown in recent years, increasing the consumption of protein. Meat is the main source of protein, although its consumption has been reduced due to its negative impact on health, the environment and its high price. This is driving the search for more sustainable alternatives, such as meat analogues. These products mimic meat and are made from vegetable proteins using extrusion technology. Among the various sources of vegetable proteins, pulses are the most common due to their high protein quality.

This study focused on the development of meat analogues using bean protein isolate and whole wheat bran in a 2:1 ratio respectively. Three batches were prepared with different initial water:flour content, being HA: 60%:40%, HM: 50%:50% and HB: 40%:50% respectively. The HA and HM batches were prepared by mixing the water and raw material before adding them to the extruder. The HM batch was prepared by adding the feedstock manually to the extruder and the water flow was 18 ml/min through a pump. The samples were processed in a twin screw extruder at a speed of 150 rpm.

The water absorption rate of broad bean flour and its mixture with wheat bran were evaluated, with no significant differences between the two. The textured samples had different moisture levels, which affected colour and texture. The HB sample, with the lowest moisture content, was the darkest. In terms of texture, the HB sample had higher hardness, gumminess and chewiness than HM and HA due to its lower moisture content. No significant differences in water holding capacity were observed between the samples.

Downloads

Download data is not yet available.
Metrics
Views/Downloads
  • Abstract
    185
  • pdf (Español (España))
    78

References

Aburto Rodríguez, R. N., & Taboada Rosales, J. M. (2019). Efecto del proceso de extrusión en la calidad proteica de un snack, utilizando quinua (chenopodium quinoa) y harina de habas (vicia faba). [Tesis de licenciatura, Universidad Nacional del Santa]. Repositorio Institucional UNS. https://repositorio.uns.edu.pe/handle/20.500.14278/3454

Ačkar, Đ., Jozinović, A., Babić, J., Miličević, B., Panak Balentić, J., & Šubarić, D. (2018). Resolving the problem of poor expansion in corn extrudates enriched with food industry by-products. Innovative Food Science & Emerging Technologies, 47, 517–524. https://doi.org/10.1016/j.ifset.2018.05.004

AESAN. (2018, 14 de mayo). La AECOSAN aconseja mantener las recomendaciones de salud pública sobre el consumo moderado de carne. Agencia Española de Seguridad Alimentaria y Nutrición. https://www.aesan.gob.es/AECOSAN/web/noticias_y_actualizaciones/temas_de_interes/carne.htm

AINIA. (2019a, 28 de marzo). Proteínas 2030: diseñando nuevos alimentos sostenibles. AINIA. https://www.ainia.es/jornada-innovacion-proteinas/

AINIA. (2019b, July 17). Nuevas fuentes de proteína vegetal para el desarrollo de ingredientes sostenibles. AINIA. https://www.ainia.com/ainia-news/fuentes-proteina-vegetal/

Aro Aro, J. M., & Calsin Cutimbo, M. (2019). Elaboración de una mezcla alimenticia a base de quinua (Chenopodium quinoa Willd), cañihua (Chenopodium pallidicaule Aellen), cebada (Hordeum vulgare L.) maiz (Zea mays L.), haba (Vicia faba L.) y soya (Glycine max L. Merr) por proceso de cocción – extrusión. Revista de Investigaciones Altoandinas - Journal of High Andean Research, 21(4), 293–303. https://doi.org/10.18271/ria.2019.506

Asgar, M. A., Fazilah, A., Huda, N., Bhat, R., & Karim, A. A. (2010). Nonmeat Protein Alternatives as Meat Extenders and Meat Analogs. Comprehensive Reviews in Food Science and Food Safety, 9(5), 513–529. https://doi.org/10.1111/j.1541-4337.2010.00124.x

Ayala Rodríguez, V. A. (2021). Calidad nutricional in vitro de la fracción proteica de haba (Vicia faba) [Tesis de maestría, Universidad Autónoma de Nuevo León]. https://eprints.uanl.mx/22613/

Blanco Espeso, B. (2017). Estudio de la tecnología de extrusión para la valorización de subproductos vegetales y nuevas aplicaciones en leguminosas como ingredientes de productos para alimentación humana. [Tesis doctoral, Universidad de Burgos]. https://riubu.ubu.es/handle/10259/4515

Bresciani, A., Chiodaroli, G., Landers, M., Müller, J., Wiertz, J., & Marti, A. (2023). A Short Communication on Functional, Rheological, and Extrusion Properties of High Protein Fractions from Pulses Obtained by Air Classification. Food and Bioprocess Technology, 1–7.

Chaquilla-Quilca, G., Balandrán-Quintana, R. R., Mendoza-Wilson, A. M., & Mercado-Ruiz, J. N. (2018). Propiedades y posibles aplicaciones de las proteínas de salvado de trigo. CienciaUAT, 12(2), 137–147.

De Angelis, D., Latrofa, V., Caponio, F., Pasqualone, A., & Summo, C. (2024). Techno-functional properties of dry-fractionated plant-based proteins and application in food product development: a review. Journal of the Science of Food and Agriculture, 104(4), 1884–1896. https://doi.org/10.1002/jsfa.13168

Durán Rodríguez, L. (2022). Elaboración de análogos cárnicos vía fermentativa. [Trabajo de fin de máster, Universitat Oberta de Catalunya]. http://hdl.handle.net/10609/140106

Eurocarne. (2023, 11 de octubre). Estiman una reducción del consumo de carne en la UE del 1,5% para 2023. https://eurocarne.com/noticias/codigo/60066/kw/

Fang, Y., Zhang, B., & Wei, Y. (2014). Effects of the specific mechanical energy on the physicochemical properties of texturized soy protein during high-moisture extrusion cooking. Journal of Food Engineering, 121, 32–38.

Ferawati, F., Zahari, I., Barman, M., Hefni, M., Ahlström, C., Witthöft, C., & Östbring, K. (2021). High-moisture meat analogues produced from yellow pea and faba bean protein isolates/concentrate: Effect of raw material composition and extrusion parameters on texture properties. Foods, 10(4). https://doi.org/10.3390/foods10040843

Ferrer, G. M., & Gou, P. (2022). Análogos cárnicos: Extrusionados con baja y alta humedad. Eurocarne: La Revista Internacional Del Sector Cárnico, 305, 47–52.

Freeman, C. (2023). Mejora la calidad de los alimentos mediante el análisis de texturas. Instru. https://www.instru.es/ficheros/ESP-TRA-Improving%20food%20quality%20throught%20texture%20analysis-Rev.1docx.pdf

Gómez Riesco, G. (2021). Estudio bibliográfico sobre las proteínas procedentes del guisante para la elaboración de texturizados y análogos cárnicos. [Trabajo de fin de grado, Universidad de Salamanca]. http://hdl.handle.net/10366/156711

Grau, R., & Hamm, R. (1953). Eine einfache methode zur bestimmung der wasserbindung im muskel. Naturwissenschaften, 40(1), 29–30.

Kantanen, K., Oksanen, A., Edelmann, M., Suhonen, H., Sontag-Strohm, T., Piironen, V., Ramos Diaz, J. M., & Jouppila, K. (2022). Physical properties of extrudates with fibrous structures made of faba bean protein ingredients using high moisture extrusion. Foods, 11(9), 1280.

Kim, T. (2018). Texturization of pulse proteins: peas, lentils, and faba beans. [Tesis doctoral, Texas A&M University]. https://hdl.handle.net/1969.1/173522

Kim, T., Riaz, M. N., Awika, J., & Teferra, T. F. (2021). The effect of cooling and rehydration methods in high moisture meat analogs with pulse proteins-peas, lentils, and faba beans. Journal of Food Science, 86(4), 1322–1334. https://doi.org/10.1111/1750-3841.15660

Latvala, T., Niva, M., Mäkelä, J., Pouta, E., Heikkilä, J., Kotro, J., & Forsman-Hugg, S. (2012). Diversifying meat consumption patterns: Consumers’ self-reported past behaviour and intentions for change. Meat Science, 92(1), 71–77. https://doi.org/10.1016/j.meatsci.2012.04.014

Lazou, A., & Krokida, M. (2010). Structural and textural characterization of corn–lentil extruded snacks. Journal of Food Engineering, 100(3), 392–408.

Lin, S., Huff, H. E., & Hsieh, F. (2000). Texture and chemical characteristics of soy protein meat analog extruded at high moisture. Journal of Food Science, 65(2), 264–269.

Martínez Martínez, P. (2018). Interacción sinérgica de bacterias fijadoras de nitrógeno y hongos micorrícicos arbusculares en un cultivo de haba (Vicia faba L.) bajo práctica de manejo convencional. [Trabajo de fin de grado, Universidad Politécnica de Cartagena]. http://hdl.handle.net/10317/6740

Mateen, A., Mathpati, M., & Singh, G. (2023). A study on high moisture extrusion for making whole cut meat analogue: Characterization of system, process and product parameters. Innovative Food Science & Emerging Technologies, 85, 103315. https://doi.org/10.1016/j.ifset.2023.103315

Mazaheri Tehrani, M., Ehtiati, A., & Sharifi Azghandi, S. (2017). Application of genetic algorithm to optimize extrusion condition for soy-based meat analogue texturization. Journal of Food Science and Technology, 54, 1119–1125.

Nascimento, E. M. da G. C. do, Carvalho, C. W. P., Takeiti, C. Y., Freitas, D. D. G. C., & Ascheri, J. L. R. (2012). Use of sesame oil cake (Sesamum indicum L.) on corn expanded extrudates. Food Research International, 45(1), 434–443. https://doi.org/10.1016/j.foodres.2011.11.009

Natabirwa, H., Muyonga, J. H., Nakimbugwe, D., & Lungaho, M. (2018). Physico-chemical properties and extrusion behaviour of selected common bean varieties. Journal of the Science of Food and Agriculture, 98(4), 1492–1501. https://doi.org/10.1002/jsfa.8618

Otón Alcaraz, M. (2017). Elaboración industrial de haba mínimamente procesada en fresco. Optimización de su calidad y vida comercial [Tesis doctoral, Universidad Politécnica de Cartagena]. https://repositorio.upct.es/entities/publication/4effcb12-2886-4486-b1ae-5cb4292ab546

Peñaranda, I., Garrido, M. D., García-Segovia, P., Martínez-Monzó, J., & Igual, M. (2023). Enriched Pea Protein Texturing: Physicochemical Characteristics and Application as a Substitute for Meat in Hamburgers. Foods, 12(6). https://doi.org/10.3390/foods12061303

Rekola, S.-M., Kårlund, A., Mikkonen, S., Kolehmainen, M., Pomponio, L., & Sozer, N. (2023). Structure, texture and protein digestibility of high moisture extruded meat alternatives enriched with cereal brans. Applied Food Research, 3(1), 100262. https://doi.org/10.1016/j.afres.2023.100262

Ruedt, C., Gibis, M., & Weiss, J. (2023). Meat color and iridescence: Origin, analysis, and approaches to modulation. Comprehensive Reviews in Food Science and Food Safety, 22(4), 3366–3394. https://doi.org/10.1111/1541-4337.13191

Saldanha do Carmo, C., Knutsen, S. H., Malizia, G., Dessev, T., Geny, A., Zobel, H., Myhrer, K. S., Varela, P., & Sahlstrøm, S. (2021). Meat analogues from a faba bean concentrate can be generated by high moisture extrusion. Future Foods, 3, 100014. https://doi.org/10.1016/j.fufo.2021.100014

Saldanha do Carmo, C., Rieder, A., Varela, P., Zobel, H., Dessev, T., Nersten, S., Gaber, S. M., Sahlstrøm, S., & Knutsen, S. H. (2023). Texturized vegetable protein from a faba bean protein concentrate and an oat fraction: Impact on physicochemical, nutritional, textural and sensory properties. Future Foods, 7, 100228. https://doi.org/10.1016/j.fufo.2023.100228

Sánchez, E. (2023, marzo 22). El 63% de los consumidores probaría la carne cultivada. AINIA. https://www.ainia.com/ainia-news/el-63-de-los-consumidores-probaria-la-carne-cultivada/

Schreuders, F. K. G., Schlangen, M., Kyriakopoulou, K., Boom, R. M., & van der Goot, A. J. (2021). Texture methods for evaluating meat and meat analogue structures: A review. Food Control, 127, 108103. https://doi.org/10.1016/j.foodcont.2021.108103

Singh, M., Trivedi, N., Enamala, M. K., Kuppam, C., Parikh, P., Nikolova, M. P., & Chavali, M. (2021). Plant-based meat analogue (PBMA) as a sustainable food: A concise review. European Food Research and Technology, 247, 2499–2526.

Singh, R., & Koksel, F. (2021). Effects of particle size distribution and processing conditions on the techno-functional properties of extruded soybean meal. LWT, 152, 112321. https://doi.org/10.1016/j.lwt.2021.112321

Strauta, L., & Muizniece-Brasava, S. (2016). The Characteristics of Extruded Faba Beans (Vicia faba L.). Rural Sustainability Research, 36. https://doi.org/10.1515/plua-2016-0013

Talens, P. (2017a). Caracterización de las propiedades mecánicas de alimentos mediante análisis de perfil de textura. Universitat Politècnica de València. https://riunet.upv.es/handle/10251/83513

Talens, P. (2017b). Evaluación del color y tolerancia de color en alimentos a través del espacio CIELAB [Artículo docente]. Universitat Politècnica de València. https://riunet.upv.es/handle/10251/83513

Vegas, R., Zavaleta, A., & Vegas, C. (2017). Efecto del pH y cloruro de sodio sobre las propiedades funcionales de harina de semillas de lupinus mutabilis “tarwi” variedad criolla. Agroindustrial Science, 7(1), 49–55. https://doi.org/10.17268/agroind.science.2017.01.05

Wild, F. (2016). Manufacture of Meat Analogues Through High Moisture Extrusion. In Reference Module in Food Science. Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.03281-9

Yanniotis, S., Petraki, A., & Soumpasi, E. (2007). Effect of pectin and wheat fibers on quality attributes of extruded cornstarch. Journal of Food Engineering, 80(2), 594–599.

Published
23-07-2025
How to Cite
Martínez López, M., & Egea Clemenz, M. (2025). PRODUCTION OF MEAT ANALOGUES BY HIGH HUMIDITY EXTRUSION PROCESS FROM BEAN PROTEIN ISOLATE AND WHOLE WHEAT BRAN. Anales De Veterinaria De Murcia, 39. https://doi.org/10.6018/analesvet.634091
Issue
Section
Trabajos Fin de Grado/Fin de Máster