CONTRIBUTIONS OF SPATIAL EPIDEMIOLOGY TO THE MONITORING AND CONTROL OF Q FEVER: SYSTEMATIC REVIEW

Authors

  • Catalina Martínez Ruiz Departamento de Sanidad Animal, Facultad de Veterinaria. Universidad de Murcia
  • Jorge Rivera Gomis Departamento de Sanidad Animal. Facultad de Veterinaria. Universidad de Murcia
  • Joaquín Amores Iniesta Departamento de Sanidad Animal, Facultad de Veterinaria. Universidad de Murcia
  • Antonio Sánchez López Departamento de Sanidad Animal. Facultad de Veterinaria. Universidad de Murcia
  • Antonio Contreras de Vera Departamento de Sanidad Animal. Facultad de Veterinaria. Universidad de Murcia
DOI: https://doi.org/10.6018/analesvet.556661
Keywords: zoonoses, Geographic Information System, Coxiella burnetii

Abstract

Q fever is a worldwide zoonosis caused by Coxiella burnetii with many hosts, being domestic ruminants the most important infection source for humans, mainly after inhalation of contaminated aerosols or because the proximity to areas with infected livestock. Geographic information systems (GIS) is becoming increasingly accurate providing spatial databases of infectious disease trends. We followed the PRISMA method and searched for literature in three databases: PubMed®, Scopus® and Web of Science.  Initially we obtained 1584 records, of which a total of 86 articles were finally included, published from 31 different countries between 1964 and 2021. We extracted quantitative information that we coded and included in an Excel table and summarized the main contributions.  Since the epidemic in the Netherlands between 2007-2010, more and more articles have been published on this topic, with the Netherlands being the country with the highest number of extracted references. Map visualization was present in 60% of the cases, while the remaining 20% used spatial tools to perform scans or modelling to predict and monitor the incidence of Q fever. Most of the maps depicted are symbol or coropletic graphic maps, isopletic appear to a lesser extent or combined with the other two. ArcGis and to a smaller degree QGIS are mostly used for the realization of these maps. This GIS software provide tools for mapping and spatial analysis. Other software such as SPSS and R were used for the analysis of spatial data and spatio-temporal models applied to GIS, such as the Kernel density model or Bayesian models. GIS are more used in animal health than in public health and GIS stated the important role of wind in the spread of the infection or detect the risk of infection for people in relation to proximity to infected dairy goat herds.

Downloads

Download data is not yet available.

References

Acevedo, B. I., Gómez, A. N., (2008). Algunos elementos para el análisis de datos espaciales: teoría y aplicación. Tesis de grado. Universidad EAFIT. Medellín. Colombia. https://repository.eafit.edu.co/bitstream/handle/10784/133/Ingrid-AcevedoBohorquez- 2008.pdf?sequence=1&isAllowed=y. Consultado el 13/02/2023.

Brooke, R. J., Kretzschmar, M. E., Hackert, V., Hoebe, C. J., Teunis, P. F., & Waller, L. A. (2017). Spatial Prediction of Coxiella burnetii Outbreak Exposure via Notified Case Counts in a Dose-Response Model. Epidemiology, 28(1), 127-135. https://doi.org/10.1097/ede.0000000000000574

Canevari, J. T., Firestone, S. M., Vincent, G., Campbell, A., Tan, T., Muleme, M., Cameron, A. W. N., & Stevenson, M. A. (2018). The prevalence of Coxiella burnetii shedding in dairy goats at the time of parturition in an endemically infected enterprise and associated milk yield losses. BMC veterinary research, 14(1), 353. https://doi.org/10.1186/s12917-018-1667-x

Capuano, F., Perugini, A. G., Parisi, A., Montagna, C. O., & Nilvetti, M. (2004). Improved detection of Coxiella burnetii in cows milk by immunomagnetic separation and PCR. Veterinary research communications, 28 Suppl 1, 279–282. https://doi.org/10.1023/b:verc.0000045426.44521.24

Clark, N. J., & Soares Magalhães, R. J. (2018). Airborne geographical dispersal of Q fever from livestock holdings to human communities: a systematic review and critical appraisal of evidence. BMC infectious diseases, 18(1), 218. https://doi.org/10.1186/s12879-018-3135-4

Clarke, D. J., Jacq, A., & Holland, I. B. (1996). A novel DnaJ-like protein in Escherichia coli inserts into the cytoplasmic membrane with a type III topology. Molecular microbiology, 20(6), 1273–1286. https://doi.org/10.1111/j.1365-2958.1996.tb02646.x

de Boer, P. T., de lange, M. M. A., Wielders, C. C. H., Dijkstra, F., van Roeden, S. E., Bleeker-Rovers, C. P., . . . van der Hoek, W. (2020). Cost-effectiveness of Screening Program for Chronic Q Fever, the Netherlands. Emerging Infectious Diseases, 26(2), 238-246. https://doi.org/10.3201/eid2602.181772

de Rooij, M. M., Borlée, F., Smit, L. A., de Bruin, A., Janse, I., Heederik, D. J., & Wouters, I. M. (2016). Detection of Coxiella burnetii in Ambient Air after a Large Q Fever Outbreak. PLoS One, 11(3), e0151281. https://doi.org/10.1371/journal.pone.0151281

Dean, AG., Arner, TG., Sunki, GG., Friedman, R., Lantinga, M., Sangam, S., Zubiet,a JC., Sullivan, KM., Brende,l KA., Gao, Z., Fontaine, N., Shu, M., Fulle,r G., Smith, DC., Nitschke, DA., and Fagan RF. (2011). Epi Info™, a database and statistics program for public health professionals. CDC, Atlanta, GA, USA.

Dhewantara, P.W., Lau, C.L., Allan, K.J., Hu, W., Zhang, W., Mamun, A.A., Soares Magalhães, R.J., 2019. Spatial epidemiological approaches to inform leptospirosis surveillance and control: A systematic review and critical appraisal of methods. Zoonoses and Public Health 66, 185–206. doi:10.1111/zph.12549

EFSA Panel on Animal Health and Welfare EFSA, 2010. Scientific opinion on Q fever. EFSA Journal 8, 1595 (1114pp). https://www.efsa.europa.eu/en/efsajournal/pub/1595. Consultado el 13/02/2023.

Eisen RJ, Eisen L. (2014). Use of geographic information systems in infectious disease surveillance. En: Concepts and Methods in Infectious Disease Surveillance. (p. 219–29). Oxford, UK: John Wiley & Sons, Ltd. Doi: 10.1002/9781118928646.ch20

Fakour, S., Jamali, R., & Ahmadi, E. (2021). Seroepidemiological study on Coxiella burnetii and associated risk factors in ruminants at Kurdistan Province, west of Iran. Comp Immunol Microbiol Infect Dis, 78, 101691. https://doi.org/10.1016/j.cimid.2021.101691

García-Seco R. T. (2017). Epidemiología de la fiebre Q en rumiantes domésticos en la zona central de la península ibérica. Tesis de grado. Universidad Complutense Madrid. Madrid. España. https://eprints.ucm.es/id/eprint/49584/ Consultado el día 13/02/2022.

Georgiev, M., Afonso, A., Neubauer, H., Needham, H., Thiery, R., Rodolakis, A., Roest, H., Stark, K., Stegeman, J., Vellema, P., van der Hoek, W., & More, S. (2013). Q fever in humans and farm animals in four European countries, 1982 to 2010. Euro surveillance: bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin, 18(8), 20407.

González-Barrio, D., & Ruiz-Fons, F. (2019). Coxiella burnetii in wild mammals: A systematic review. Transboundary and emerging diseases, 66(2), 662–671. https://doi.org/10.1111/tbed.13085

Hackert, V. H., van der Hoek, W., Dukers-Muijrers, N., de Bruin, A., Al Dahouk, S., Neubauer, H., . . . Hoebe, C. J. (2012). Q fever: single-point source outbreak with high attack rates and massive numbers of undetected infections across an entire region. Clin Infect Dis, 55(12), 1591-1599. https://doi.org/10.1093/cid/cis734.

Hermans, T., Jeurissen, L., Hackert, V., & Hoebe, C. (2014). Land-applied goat manure as a source of human Q-fever in the Netherlands, 2006-2010. PLoS One, 9(5), e96607. https://doi.org/10.1371/journal.pone.0096607.

Joulié, A., Sidi-Boumedine, K., Bailly, X., Gasqui, P., Barry, S., Jaffrelo, L., . . . Jourdain, E. (2017). Molecular epidemiology of Coxiella burnetii in French livestock reveals the existence of three main genotype clusters and suggests species-specific associations as well as regional stability. Infect Genet Evol, 48, 142-149. https://doi.org/10.1016/j.meegid.2016.12.015

Kersh, G. J., Fitzpatrick, K. A., Self, J. S., Priestley, R. A., Kelly, A. J., Lash, R. R., . . . Anderson, A. D. (2013). Presence and Persistence of Coxiella burnetii in the Environments of Goat Farms Associated with a Q Fever Outbreak. Applied and Environmental Microbiology, 79(5), 1697-1703. https://doi.org/10.1128/aem.03472-12.

Ladbury, G. A., Van Leuken, J. P., Swart, A., Vellema, P., Schimmer, B., Ter Schegget, R., & Van der Hoek, W. (2015). Integrating interdisciplinary methodologies for One Health: goat farm re-implicated as the probable source of an urban Q fever outbreak, the Netherlands, 2009. BMC Infect Dis, 15, 372. https://doi.org/10.1186/s12879-015-1083-9

Lai, C.-H., Chang, L.-L., Lin, J.-N., Tsai, K.-H., Hung, Y.-C., Kuo, L.-L., . . . Chen, Y.-H. (2014). Human Spotted Fever Group Rickettsioses Are Underappreciated in Southern Taiwan, Particularly for the Species Closely-Related to Rickettsia felis. Plos One, 9(4), Article e95810. https://doi.org/10.1371/journal.pone.0095810

Marrie, T. J., van Buren, J., Faulkner, R. S., Haldane, E. V., Williams, J. C., & Kwan, C. (1984). Seroepidemiology of Q fever in Nova Scotia and Prince Edward Island. Canadian Journal of Microbiology, 30(1), 129-134. https://doi.org/10.1139/m84-021

Nusinovici, S., Hoch, T., Widgren, S., Joly, A., Lindberg, A., & Beaudeau, F. (2014). Relative contributions of neighbourhood and animal movements to Coxiella burnetii infection in dairy cattle herds. Geospat Health, 8(2), 471-477. https://doi.org/10.4081/gh.2014.36

OIE Organización Mundial de Sanidad Animal. (2022). Fiebre Q. Manual de las Pruebas de Diagnóstico y de las Vacunas para los Animales Terrestres. https://www.woah.org/fileadmin/Home/esp/Health_standards/tahm/3.01.17_Q-FEVER.pdf. Consultado el 13/02/2023.

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al., (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. PLoS Med 18(3): e1003583. https://doi.org/10.1371/journal. pmed.1003583

Pandit, P., Hoch, T., Ezanno, P., Beaudeau, F., & Vergu, E. (2016). Spread of Coxiella burnetii between dairy cattle herds in an enzootic region: modelling contributions of airborne transmission and trade. Veterinary Research, 47, Article 48. https://doi.org/10.1186/s13567-016-0330-4

Pilloux, L., Baumgartner, A., Jaton, K., Lienhard, R., Ackermann-Gäumann, R., Beuret, C., & Greub, G. (2019). Prevalence of Anaplasma phagocytophilum and Coxiella burnetii in Ixodes ricinus ticks in Switzerland: an underestimated epidemiologic risk. New Microbes and New Infections, 27, 22-26. https://doi.org/10.1016/j.nmni.2018.08.017

Reedijk, M., van Leuken, J. P., & van der Hoek, W. (2013). Particulate matter strongly associated with human Q fever in The Netherlands: an ecological study. Epidemiol Infect, 141(12), 2623-2633. https://doi.org/10.1017/s0950268813000460

Sargeant, J. M., & O'Connor, A. M. (2014). Introduction to systematic reviews in animal agriculture and veterinary medicine. Zoonoses and public health, 61 Suppl 1, 3–9. https://doi.org/10.1111/zph.12128

Sargeant, J. M., Rajic, A., Read, S., & Ohlsson, A. (2006). The process of systematic review and its application in agri-food public-health. Preventive veterinary medicine, 75(3-4), 141–151. https://doi.org/10.1016/j.prevetmed.2006.03.002

Schimmer, B., Ter Schegget, R., Wegdam, M., Züchner, L., de Bruin, A., Schneeberger, P. M., . . . van der Hoek, W. (2010). The use of a geographic information system to identify a dairy goat farm as the most likely source of an urban Q-fever outbreak. BMC Infect Dis, 10, 69. https://doi.org/10.1186/1471-2334-10-69.

Schneeberger, P. M., Wintenberger, C., van der Hoek, W., & Stahl, J. P. (2014). Q fever in the Netherlands - 2007-2010: what we learned from the largest outbreak ever. Medecine et maladies infectieuses, 44(8), 339–353. https://doi.org/10.1016/j.medmal.2014.02.006

Shaweno, D., Karmakar, M., Alene, K. A., Ragonnet, R., Clements, A. C., Trauer, J. M., Denholm, J. T., & McBryde, E. S. (2018). Methods used in the spatial analysis of tuberculosis epidemiology: a systematic review. BMC medicine, 16(1), 193. https://doi.org/10.1186/s12916-018-1178-4

Smith, C. M., Le Comber, S. C., Fry, H., Bull, M., Leach, S., & Hayward, A. C. (2015). Spatial methods for infectious disease outbreak investigations: systematic literature review. Euro surveillance: bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin, 20(39), 10.2807/1560-7917.ES.2015.20.39.30026. https://doi.org/10.2807/1560-7917.ES.2015.20.39.30026

Soetens, L., Hahne, S., & Wallinga, J. (2017). Dot map cartograms for detection of infectious disease outbreaks: an application to Q fever, the Netherlands and pertussis, Germany. Euro surveillance: bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin, 22(26). https://doi.org/10.2807/1560-7917.es.2017.22.26.30562

van der Hoek, W., Dijkstra, F., Schimmer, B., Schneeberger, P. M., Vellema, P., Wijkmans, C., ter Schegget, R., Hackert, V., & van Duynhoven, Y. (2010). Q fever in the Netherlands: an update on the epidemiology and control measures. Euro surveillance: bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin, 15(12), 19520.

Van Der Hoek, W., Morroy, G., Renders, N. H. M., Wever, P. C., Hermans, M. H. A., Leenders, A. C. A. P., & Schneeberger, P. M. (2012). Epidemic Q fever in humans in the Netherlands. In Advances in Experimental Medicine and Biology (Vol. 984, pp. 329-364).

Van Leuken, J. P. G., van de Kassteele, J., Sauter, F. J., van der Hoek, W., Heederik, D., Havelaar, A. H., & Swart, A. N. (2015). Improved correlation of human Q fever incidence to modelled C-burnetii concentrations by means of an atmospheric dispersion model. International Journal of Health Geographics, 14, Article 14. https://doi.org/10.1186/s12942-015-0003-y

Vriezen, R., Sargeant, J. M., Vriezen, E., Reist, M., Winder, C. B., & O'Connor, A. M. (2019). Systematic reviews and meta-analyses in animal health, performance, and on-farm food safety: a scoping review. Animal health research reviews, 20(2), 116–127. https://doi.org/10.1017/S1466252319000197

Weitzel, T., López, J., Acosta-Jamett, G., Edouard, S., Parola, P., & Abarca, K. (2016). Absence of convincing evidence of Coxiella burnetii infection in Chile: A cross-sectional serosurvey among healthy adults in four different regions. BMC Infectious Diseases, 16(1). https://doi.org/10.1186/s12879-016-1880-9

Woldehiwet, Z. (2004). Q fever (coxiellosis): epidemiology and pathogenesis. Research in Veterinary Science, 77(2), 93-100. https://doi.org/10.1016/j.rvsc.2003.09.001

Published
23-05-2023
How to Cite
Martínez Ruiz, C., Rivera Gomis, J., Amores Iniesta, J., Sánchez López, A., & Contreras de Vera, A. (2023). CONTRIBUTIONS OF SPATIAL EPIDEMIOLOGY TO THE MONITORING AND CONTROL OF Q FEVER: SYSTEMATIC REVIEW. Anales de Veterinaria de Murcia, 37. https://doi.org/10.6018/analesvet.556661
Issue
Section
Trabajos Fin de Grado/Fin de Máster