EFFECT OF TEMPERATURE ON THE MICROBIOTA OF THE EDIBLE INSECT ACHETA DOMESTICUS
Abstract
The insect microbiota performs essential functions in their metabolism, contributing to the proper functioning of the immune system and favoring digestion. The cricket species Acheta domesticus has recently been authorized for human consumption. The massive production of this species implies large energy costs in the breeding area, so variations in room temperature could mean significant savings in production costs. This study aims to analyze the influence of temperature on the composition of the intestinal microbiota, considering the hypothesis that changes in temperature affect the microbiota of ectothermic insects. For this, two groups of crickets were selected in separate boxes and subjected to temperatures of 20 ºC and 30 ºC, respectively. Subsequently, their intestines were removed and their bacterial populations were quantified using metagenomic techniques. The results obtained showed that the most abundant taxa hardly varied in all samples. Abundance relatives of Bacteria belonging to the phylum Firmicutes was 31.5 ± 2.06%, in Bacteroidetes 24.25 ± 3.89% and in Proteobacteria 44 ± 4.85%. The only sample showing difference was that reared at 30ºC, in which 0.8% of Actinobacteria was detected. In conclusion, it could be said that the rearing temperature of cricket farms has slightly influenced the composition of the intestinal microbiota, therefore the initial hypothesis is accepted. Incidentally, high mortality has been observed in the sample kept at 30ºC, suggesting that this factor should be carefully considered in massive rearing of crickets.
Downloads
References
AECOSAN. Informe del Comité Científico de la Agencia Española de Consumo, Seguridad Alimentaria y Nutrición (AECOSAN) en relación a los riesgos microbiológicos y alergénicos asociados al consumo de insectos (AECOSAN-2018-001). https://www.aesan.gob.es/AECOSAN/docs/documentos/seguridad_alimentaria/evaluacion_riesgos/informes_comite/CONSUMO_INSECTOS.pdf
Binda, C., Lopetuso, L. R., Rizzatti, G., Gibiino, G., Cennamo, V., & Gasbarrini, A. (2018). Actinobacteria: a relevant minority for the maintenance of gut homeostasis. Digestive and Liver Disease, 50(5), 421–428. https://doi.org/10.1016/j.dld.2018.02.012
Bermingham, E. N., Maclean, P., Thomas, D. G., Cave, N. J., & Young, W. (2017). Key bacterial families (Clostridiaceae, Erysipelotrichaceae and Bacteroidaceae) are related to the digestion of protein and energy in dogs. PeerJ, 5, e3019. https://doi.org/10.7717/peerj.3019
Engel, P., & Moran, N. A. (2013). The gut microbiota of insects – diversity in structure and function. FEMS Microbiology Reviews, 37(5), 699–735. https://doi.org/10.1111/1574-6976.12025
Ferguson, L. V., Dhakal, P., Lebenzon, J. E., Heinrichs, D. E., Bucking, C., & Sinclair, B. J. (2018). Seasonal shifts in the insect gut microbiome are concurrent with changes in cold tolerance and immunity. Functional Ecology, 32(10), 2357–2368. https://doi.org/10.1111/1365-2435.13153
Fernandez-Cassi, X., Söderqvist, K., Bakeeva, A., Vaga, M., Dicksved, J., Vagsholm, I., Jansson, A., & Boqvist, S. (2020). Microbial communities and food safety aspects of crickets (Acheta domesticus) reared under controlled conditions. Journal of Insects as Food and Feed, 6(4), 429–440. https://doi.org/10.3920/jiff2019.0048
Guevara Larrea, B. L. (2017, noviembre). Aislamiento y caracterización morfológica de cepas nativas de actinomicetos y su actividad antagónica contra Ralstonia solanacearum, Escherichia coli, Staphylococcus aureus y Salmonella sp. Escuela Agrícola Panamericana, Zamorano Honduras. https://bdigital.zamorano.edu/bitstream/11036/5968/1/IAD-2017-015.pdf
Ismail, N. A., Ragab, S. H., ElBaky, A. A., Shoeib, A. R., Alhosary, Y., & Fekry, D. (2011). Frequency of Firmicutes and Bacteroidetes in gut microbiota in obese and normal weight Egyptian children and adults. Archives of Medical Science, 3, 501–507. https://doi.org/10.5114/aoms.2011.23418
Jung, J., Heo, A., Park, Y. W., Kim, Y. J., Koh, H., & Park, W. (2014). Gut microbiota of Tenebrio molitor and their response to environmental change. Journal of Microbiology and Biotechnology, 24(7), 888–897. https://doi.org/10.4014/jmb.1405.05016
Jongema, Y. (2017). List of edible insects of the world. Wageningen University &
Research, Wageningen, the Netherlands. https://www.wur.nl/upload_mm/8/a/6/0fdfc700-3929-4a74-8b69-f02fd35a1696_Worldwide%20list%20of%20edible%20insects%202017.pdf
Kim, Y. H., & Milner, J. A. (2007b). Dietary Modulation of Colon Cancer Risk.
Journal of Nutrition, 137(11), 2576S-2579S. https://doi.org/10.1093/jn/137.11.2576s
Méndez-Salazar, E. O., Ortiz-López, M. G., Granados-Silvestre, M. D. L. N., Palacios-González, B., & Menjivar, M. (2018). Corrigendum: Altered gut microbiota and compositional changes in Firmicutes and Proteobacteria in Mexican undernourished and obese children. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.02693
Meticulous Market Research Pvt. Ltd. (2019). Edible Insects Market Worth $7.96 Billion by 2030- Exclusive Report by Meticulous Research®. GlobeNewswire News Room. https://www.globenewswire.com/news-release/2019/09/24/1919753/0/en/Edible-Insects-Market-Worth-7-96-Billion-by-2030-Exclusive-Report-by-Meticulous-Research.html
Moeller, A. H., Ivey, K., Cornwall, M. B., Herr, K., Rede, J., Taylor, E. N., & Gunderson, A. R. (2020). The lizard gut microbiome changes with temperature and is associated with heat tolerance. Applied and Environmental Microbiology, 86(17). https://doi.org/10.1128/aem.01181-20
Mukhopadhya, I., Hansen, R., El-Omar, E. M., & Hold, G. L. (2012). IBD—what role do Proteobacteria play? Nature Reviews Gastroenterology & Hepatology, 9(4), 219–230. https://doi.org/10.1038/nrgastro.2012.14
Ng, S. H., Stat, M., Bunce, M., & Simmons, L. W. (2018). The influence of diet and environment on the gut microbial community of field crickets. Ecology and Evolution, 8(9), 4704–4720. https://doi.org/10.1002/ece3.3977
Ranjani, A., Dhanasekaran, D., & Gopinath, P. M. (2016). An Introduction to Actinobacteria. Actinobacteria - Basics and Biotechnological Applications. Published. https://doi.org/10.5772/62329
Rizzatti, G., Lopetuso, L. R., Gibiino, G., Binda, C., & Gasbarrini, A. (2017). Proteobacteria: a common factor in human diseases. BioMed Research International, 2017, 1–7. https://doi.org/10.1155/2017/9351507
Santo Domingo, J. W., Kaufman, M. G., Klug, M. J., Holben, W. E., Harris, D., & Tiedje, J. M. (1998). Influence of diet on the structure and function of the bacterial hindgut community of crickets. Molecular Ecology, 7(6), 761–767. https://doi.org/10.1046/j.1365-294x.1998.00390.x
Shin, N. R., Whon, T. W., & Bae, J. W. (2015). Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends in Biotechnology, 33(9), 496–503. https://doi.org/10.1016/j.tibtech.2015.06.011
Smith, C. J., Rocha, E. R., and Paster, B. J. (2006). The medically important Bacteroides spp. in health and disease.Prokaryotes 7, 381–427.
Tinker, K. A., & Ottesen, E. A. (2016). The core gut microbiome of the American cockroach, Periplaneta americana, is stable and resilient to dietary shifts. Applied and Environmental Microbiology, 82(22), 6603–6610. https://doi.org/10.1128/aem.01837-16
Unión Europea. Reglamento de Ejecución (UE) 2022/188 de la Comisión de 10 de febrero de 2022 por el que se autoriza la comercialización de las formas congelada, desecada y en polvo de Acheta domesticus como nuevo alimento con arreglo al Reglamento (UE) 2015/2283 del Parlamento Europeo y del Consejo y se modifica el Reglamento de Ejecución (UE) 2017/2470 de la Comisión. «DOUE» núm. 30, de 11 de febrero de 2022, páginas 109 a 114
Wynants, E. (2019). Microbiological dynamics and safety risks during rearing of insects for food and feed. PhD thesis. Disponible en: https://lirias.kuleuven.be/2379701?limo=0
Copyright (c) 2023 Servicio de Publicaciones, University of Murcia (Spain)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Creative Commons Attribution 4.0
The works published in this journal are subject to the following terms:
1. The Publications Service of the University of Murcia (the publisher) retains the property rights (copyright) of published works, and encourages and enables the reuse of the same under the license specified in paragraph 2.
© Servicio de Publicaciones, Universidad de Murcia, 2019
2. The works are published in the online edition of the journal under a Creative Commons Attribution-NonCommercial 4.0 (legal text). You can copy, use, distribute, transmit and publicly display, provided that: i) you cite the author and the original source of publication (journal, editorial and URL of the work), ii) are not used for commercial purposes, iii ) mentions the existence and specifications of this license.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
3. Conditions of self-archiving. Is allowed and encouraged the authors to disseminate electronically pre-print versions (version before being evaluated and sent to the journal) and / or post-print (version reviewed and accepted for publication) of their works before publication, as it encourages its earliest circulation and diffusion and thus a possible increase in its citation and scope between the academic community. RoMEO Color: Green.