Study of the microbiota of the insectTenebrio molitorin different light conditions and with two diets based on by-products from the food industry
Abstract
The intestinal microbiota of insects can be defined as the community of microorganisms living in the intestinal tract, which performs basic functions in digestive and immune system processes. The objective of this study is to analyze the microbiota of Tenebrio molitor larvae under different light conditions and with two different diets. The effect on the microbiota when subjected to continuous light, photoperiod, constant darkness and continuous red light, and two different diets based on by–products of the food industry, one composed of 80% broccoli and 20% oats, and the other of 80% spent coffee grounds and 20% oats, are studied to check the degree of reuse they could have.
In all treatments, the phyla Tenericutes, Proteobacteria, Firmicutes and Cyanobacteria predominated; and in smaller proportions, Bacteroidetes and Actinobacteria.
As a conclusion, it was determined that different light conditions do not show variation in the bacterial composition of T. molitor, however, different diets modify their intestinal microbiota. The broccoli diet was dominated by Tenericutes (mean 41,9%) and Firmicutes (31,3%), while the spent coffee grounds diet was dominated by bacteria of the Proteobacteria phylum (62%).
Downloads
References
Aguilar–Miranda, E., López, M., Escamilla–Santana, C., y Barba de la Rosa, A. (2001). Characteristics of Maize Flour Tortilla Supplemented with Ground Tenebrio molitor Larvae. Journal Of Agricultural And Food Chemistry, 50(1), 192–195. https://doi.org/10.1021/jf010691y
Anastasia Hicks, K. (2017). Population Assay of Tenebrio molitor (Linnaeus) (Coleoptera: Tenebrionidae): Growth and Development Analysis. Instars: A Journal of Student Research, 3.
Baek, S., Perez, A., Turcotte, R., White, J., Adedipe, F., y Park, Y. (2015). Response of Tenebrio molitor (Coleoptera: Tenebrionidae) adults to potato: Implications for monitoring and sampling. Journal Of Stored Products Research, 60, 5–10. https://doi.org/10.1016/j.jspr.2014.11.002
Balfour, C., y Carmichael, L. (1928). The Light Reactions of the Meal Worm (Tenebrio molitor Linn). The American Journal Of Psychology, 40(4), 576–584. https://doi.org/10.2307/1414336
Ben Guerrero, E. (2018). Análisis del microbioma de insectos: identificación y caracterización de glicosil hidrolasas. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires.
Campos–Vega, R., Loarca–Piña, G., Vergara–Castañeda, H., y Oomah, B. (2015). Spent coffee grounds: A review on current research and future prospects. Trends In Food Science & Technology, 45(1), 24–36. https://doi.org/10.1016/j.tifs.2015.04.012
Deruytter, D., Coudron, C., y Claeys, J. (2020). The influence of wet feed distribution on the density, growth rate and growth variability of Tenebrio molitor. Journal of Insects as Food and Feed, 7(2), 141–149. https://doi.org/10.3920/jiff2020.0049
Dillon, R., y Dillon, V. (2004). The gut bacteria of insects: Nonpathogenic Interactions. Annual Review Of Entomology, 49(1), 71–92. https://doi.org/10.1146/annurev.ento.49.061802.123416
dos Reis, L., de Oliveira, V., Hagen, M., Jablonski, A., Flôres, S., y de Oliveira Rios, A. (2015). Effect of cooking on the concentration of bioactive compounds in broccoli (Brassica oleracea var. Avenger) and cauliflower (Brassica oleracea var. Alphina F1) grown in an organic system. Food Chemistry, 172, 770–777. https://doi.org/10.1016/j.foodchem.2014.09.124
Engel, P., y Moran, N. (2013). The gut microbiota of insects – diversity in structure and function. FEMS Microbiology Reviews, 37(5), 699–735. https://doi.org/10.1111/1574-6976.12025
Garofalo, C., Osimani, A., Milanović, V., Taccari, M., Cardinali, F., y Aquilanti, L. et al. (2017). The microbiota of marketed processed edible insects as revealed by high–throughput sequencing. Food Microbiology, 62, 15–22. https://doi.org/10.1016/j.fm.2016.09.012
Ghaly, A., y Alkoaik, F. (2009). The Yellow Mealworm as a Novel Source of Protein. American Journal Of Agricultural And Biological Sciences, 4(4), 319–331. https://doi.org/10.3844/ajabssp.2009.319.331
Grau, T., Vilcinskas, A., y Joop, G. (2017). Sustainable farming of the mealworm Tenebrio molitor for the production of food and feed. Zeitschrift Für Naturforschung C, 72(9–10), 337–349. https://doi.org/10.1515/znc-2017-0033
Gupta, A., y Nair, S. (2020). Dynamics of Insect–Microbiome Interaction Influence Host and Microbial Symbiont. Frontiers In Microbiology, 11. https://doi.org/10.3389/fmicb.2020.01357
Jiang, J., He, Y., Kou, H., Ju, Z., Gao, X., y Zhao, H. (2020). The effects of artificial light at night on Eurasian tree sparrow (Passer montanus): Behavioral rhythm disruption, melatonin suppression and intestinal microbiota alterations. Ecological Indicators, 108, 105702. https://doi.org/10.1016/j.ecolind.2019.105702
Jung, J., Heo, A., Park, Y., Kim, Y., Koh, H., y Park, W. (2014). Gut Microbiota of Tenebrio molitor and Their Response to Environmental Change. Journal Of Microbiology And Biotechnology, 24(7), 888–897. https://doi.org/10.4014/jmb.1405.05016
Kim, Y., Snijders, A., Brislawn, C., Stratton, K., Zink, E., y Fansler, S. et al. (2019). Light–Stress Influences the Composition of the Murine Gut Microbiome, Memory Function, and Plasma Metabolome. Frontiers In Molecular Biosciences, 6. https://doi.org/10.3389/fmolb.2019.00108
Liebert, A., Bicknell, B., Johnstone, D., Gordon, L., Kiat, H., y Hamblin, M. (2019). “Photobiomics”: Can Light, Including Photobiomodulation, Alter the Microbiome? Photobiomodulation, Photomedicine, And Laser Surgery, 37(11), 681–693. https://doi.org/10.1089/photob.2019.4628
Mendaza Lainez, E. (2017). Influencia de diferentes dietas en la composición nutricional del insecto comestible Tenebrio molitor y estudio de su pardeamiento. Universidad Pública de Navarra.
Murray, D. (1968). The importance of water in the normal growth of larvae of Tenebrio molitor. Entomologia Experimentalis Et Applicata, 11(2), 149–168. https://doi.org/10.1111/j.1570-7458.1968.tb02041.x
Nino Loreto, D. (2019). Larval performance, morphological, behavioural and electrophisiological studies on Tenebrio molitor L. (Coleoptera: Tenebrionidae). Università Politecnica delle Marche.
Osimani, A., Milanović, V., Cardinali, F., Garofalo, C., Clementi, F., y Pasquini, M. et al. (2018). The bacterial biota of laboratory–reared edible mealworms (Tenebrio molitor L.): From feed to frass. International Journal Of Food Microbiology, 272, 49–60. https://doi.org/10.1016/j.ijfoodmicro.2018.03.001
Poveda Arias, J. (2019). Los microorganismos asociados a los insectos y su aplicación en la agricultura. Revista Digital Universitaria, 20(1). http://doi.org/10.22201/codeic.16076079e.2019.v20n1.a2
Rajagopal, R. (2009). Beneficial interactions between insects and gut bacteria. Indian Journal Of Microbiology, 49(2), 114–119. https://doi.org/10.1007/s12088-009-0023-z
Ramos–Elorduy, J., González, E., Hernández, A., y Pino, J. (2002). Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to Recycle Organic Wastes and as Feed for Broiler Chickens. Journal Of Economic Entomology, 95(1), 214–220. https://doi.org/10.1603/0022-0493-95.1.214
Ravzanaadii, N., Kim, S., Choi, W., Hong, S., y Kim, N. (2012). Nutritional Value of Mealworm, Tenebrio molitor as Food Source. International Journal Of Industrial Entomology, 25(1), 93–98. https://doi.org/10.7852/ijie.2012.25.1.093
Resh, V. y Cardé, R. (2009). Encyclopedia of Insects (2ª edición). Elsevier’s Science & Technology.
Schmidt, K., y Engel, P. (2021). Mechanisms underlying gut microbiota–host interactions in insects. Journal Of Experimental Biology, 224(2). https://doi.org/10.1242/jeb.207696
Siemianowska, E., Kosewska, A., Aljewicz, M., Skibniewska, K., Polak–Juszczak, L., Jarocki, A., y Jędras, M. (2013). Larvae of mealworm (Tenebrio molitor L.) as European novel food. Agricultural Sciences, 4(6), 287–291. https://doi.org/10.4236/as.2013.46041
Stoops, J., Crauwels, S., Waud, M., Claes, J., Lievens, B., y Van Campenhout, L. (2016). Microbial community assessment of mealworm larvae (Tenebrio molitor) and grasshoppers (Locusta migratoria migratorioides) sold for human consumption. Food Microbiology, 53, 122–127. https://doi.org/10.1016/j.fm.2015.09.010
Vandeweyer, D., Crauwels, S., Lievens, B., y Van Campenhout, L. (2017). Metagenetic analysis of the bacterial communities of edible insects from diverse production cycles at industrial rearing companies. International Journal Of Food Microbiology, 261, 11–18. https://doi.org/10.1016/j.ijfoodmicro.2017.08.018
Vargas Jerez, A., José Vivero, R., Uribe, S., Moreno, C. y Cadavid Restrepo, G. (2012). Interacción de microbiotas bacterianas e insectos. Boletín del Museo Entomológico, 4(3), 13–21.
Wang, Y. y Zhang, Y. (2015). Investigation of Gut–Associated Bacteria in Tenebrio molitor (Coleoptera: Tenebrionidae) Larvae Using Culture–Dependent and DGGE Methods. Annals of the Entomological Society of America, 108 (5), 941–949. https://doi.org/10.1093/aesa/sav079
Wei, L., Yue, F., Xing, L., Wu, S., Shi, Y., y Li, J. et al. (2020). Constant Light Exposure Alters Gut Microbiota and Promotes the Progression of Steatohepatitis in High Fat Diet Rats. Frontiers In Microbiology, 11. https://doi.org/10.3389/fmicb.2020.01975
Wynants, E., Crauwels, S., Lievens, B., Luca, S., Claes, J., y Borremans, A. et al. (2017). Effect of post–harvest starvation and rinsing on the microbial numbers and the bacterial community composition of mealworm larvae (Tenebrio molitor). Innovative Food Science & Emerging Technologies, 42, 8–15. https://doi.org/10.1016/j.ifset.2017.06.004
Copyright (c) 2022 Servicio de Publicaciones, University of Murcia (Spain)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Creative Commons Attribution 4.0
The works published in this journal are subject to the following terms:
1. The Publications Service of the University of Murcia (the publisher) retains the property rights (copyright) of published works, and encourages and enables the reuse of the same under the license specified in paragraph 2.
© Servicio de Publicaciones, Universidad de Murcia, 2019
2. The works are published in the online edition of the journal under a Creative Commons Attribution-NonCommercial 4.0 (legal text). You can copy, use, distribute, transmit and publicly display, provided that: i) you cite the author and the original source of publication (journal, editorial and URL of the work), ii) are not used for commercial purposes, iii ) mentions the existence and specifications of this license.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
3. Conditions of self-archiving. Is allowed and encouraged the authors to disseminate electronically pre-print versions (version before being evaluated and sent to the journal) and / or post-print (version reviewed and accepted for publication) of their works before publication, as it encourages its earliest circulation and diffusion and thus a possible increase in its citation and scope between the academic community. RoMEO Color: Green.