Study of the microbiota of the insectTenebrio molitorin different light conditions and with two diets based on by-products from the food industry

Authors

  • Antonio Ángel-Sánchez Departamento de Zoología y Antropología Física, Facultad de Veterinaria, Universidad de Murcia, 30100, Murcia, España
  • José Galián Departamento de Zoología y Antropología Física, Facultad de Veterinaria, Universidad de Murcia, 30100, Murcia, España. ArthropoTech S.L., Edificio Vitalis, 2a planta, Despacho 2.15, Campus de Espinardo, Universidad de Murcia, 30100, Murcia, España. https://orcid.org/0000-0002-1415-3767
DOI: https://doi.org/10.6018/analesvet.535101
Keywords: spent coffee grounds, broccoli, continuous light, photoperiod, continuous darkness, continuous red light

Abstract

The intestinal microbiota of insects can be defined as the community of microorganisms living in the intestinal tract, which performs basic functions in digestive and immune system processes. The objective of this study is to analyze the microbiota of Tenebrio molitor larvae under different light conditions and with two different diets. The effect on the microbiota when subjected to continuous light, photoperiod, constant darkness and continuous red light, and two different diets based on by–products of the food industry, one composed of 80% broccoli and 20% oats, and the other of 80% spent coffee grounds and 20% oats, are studied to check the degree of reuse they could have.
In all treatments, the phyla Tenericutes, Proteobacteria, Firmicutes and Cyanobacteria predominated; and in smaller proportions, Bacteroidetes and Actinobacteria.
As a conclusion, it was determined that different light conditions do not show variation in the bacterial composition of T. molitor, however, different diets modify their intestinal microbiota. The broccoli diet was dominated by Tenericutes (mean 41,9%) and Firmicutes (31,3%), while the spent coffee grounds diet was dominated by bacteria of the Proteobacteria phylum (62%).

Downloads

Download data is not yet available.

References

Aguilar–Miranda, E., López, M., Escamilla–Santana, C., y Barba de la Rosa, A. (2001). Characteristics of Maize Flour Tortilla Supplemented with Ground Tenebrio molitor Larvae. Journal Of Agricultural And Food Chemistry, 50(1), 192–195. https://doi.org/10.1021/jf010691y

Anastasia Hicks, K. (2017). Population Assay of Tenebrio molitor (Linnaeus) (Coleoptera: Tenebrionidae): Growth and Development Analysis. Instars: A Journal of Student Research, 3.

Baek, S., Perez, A., Turcotte, R., White, J., Adedipe, F., y Park, Y. (2015). Response of Tenebrio molitor (Coleoptera: Tenebrionidae) adults to potato: Implications for monitoring and sampling. Journal Of Stored Products Research, 60, 5–10. https://doi.org/10.1016/j.jspr.2014.11.002

Balfour, C., y Carmichael, L. (1928). The Light Reactions of the Meal Worm (Tenebrio molitor Linn). The American Journal Of Psychology, 40(4), 576–584. https://doi.org/10.2307/1414336

Ben Guerrero, E. (2018). Análisis del microbioma de insectos: identificación y caracterización de glicosil hidrolasas. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires.

Campos–Vega, R., Loarca–Piña, G., Vergara–Castañeda, H., y Oomah, B. (2015). Spent coffee grounds: A review on current research and future prospects. Trends In Food Science & Technology, 45(1), 24–36. https://doi.org/10.1016/j.tifs.2015.04.012

Deruytter, D., Coudron, C., y Claeys, J. (2020). The influence of wet feed distribution on the density, growth rate and growth variability of Tenebrio molitor. Journal of Insects as Food and Feed, 7(2), 141–149. https://doi.org/10.3920/jiff2020.0049

Dillon, R., y Dillon, V. (2004). The gut bacteria of insects: Nonpathogenic Interactions. Annual Review Of Entomology, 49(1), 71–92. https://doi.org/10.1146/annurev.ento.49.061802.123416

dos Reis, L., de Oliveira, V., Hagen, M., Jablonski, A., Flôres, S., y de Oliveira Rios, A. (2015). Effect of cooking on the concentration of bioactive compounds in broccoli (Brassica oleracea var. Avenger) and cauliflower (Brassica oleracea var. Alphina F1) grown in an organic system. Food Chemistry, 172, 770–777. https://doi.org/10.1016/j.foodchem.2014.09.124

Engel, P., y Moran, N. (2013). The gut microbiota of insects – diversity in structure and function. FEMS Microbiology Reviews, 37(5), 699–735. https://doi.org/10.1111/1574-6976.12025

Garofalo, C., Osimani, A., Milanović, V., Taccari, M., Cardinali, F., y Aquilanti, L. et al. (2017). The microbiota of marketed processed edible insects as revealed by high–throughput sequencing. Food Microbiology, 62, 15–22. https://doi.org/10.1016/j.fm.2016.09.012

Ghaly, A., y Alkoaik, F. (2009). The Yellow Mealworm as a Novel Source of Protein. American Journal Of Agricultural And Biological Sciences, 4(4), 319–331. https://doi.org/10.3844/ajabssp.2009.319.331

Grau, T., Vilcinskas, A., y Joop, G. (2017). Sustainable farming of the mealworm Tenebrio molitor for the production of food and feed. Zeitschrift Für Naturforschung C, 72(9–10), 337–349. https://doi.org/10.1515/znc-2017-0033

Gupta, A., y Nair, S. (2020). Dynamics of Insect–Microbiome Interaction Influence Host and Microbial Symbiont. Frontiers In Microbiology, 11. https://doi.org/10.3389/fmicb.2020.01357

Jiang, J., He, Y., Kou, H., Ju, Z., Gao, X., y Zhao, H. (2020). The effects of artificial light at night on Eurasian tree sparrow (Passer montanus): Behavioral rhythm disruption, melatonin suppression and intestinal microbiota alterations. Ecological Indicators, 108, 105702. https://doi.org/10.1016/j.ecolind.2019.105702

Jung, J., Heo, A., Park, Y., Kim, Y., Koh, H., y Park, W. (2014). Gut Microbiota of Tenebrio molitor and Their Response to Environmental Change. Journal Of Microbiology And Biotechnology, 24(7), 888–897. https://doi.org/10.4014/jmb.1405.05016

Kim, Y., Snijders, A., Brislawn, C., Stratton, K., Zink, E., y Fansler, S. et al. (2019). Light–Stress Influences the Composition of the Murine Gut Microbiome, Memory Function, and Plasma Metabolome. Frontiers In Molecular Biosciences, 6. https://doi.org/10.3389/fmolb.2019.00108

Liebert, A., Bicknell, B., Johnstone, D., Gordon, L., Kiat, H., y Hamblin, M. (2019). “Photobiomics”: Can Light, Including Photobiomodulation, Alter the Microbiome? Photobiomodulation, Photomedicine, And Laser Surgery, 37(11), 681–693. https://doi.org/10.1089/photob.2019.4628

Mendaza Lainez, E. (2017). Influencia de diferentes dietas en la composición nutricional del insecto comestible Tenebrio molitor y estudio de su pardeamiento. Universidad Pública de Navarra.

Murray, D. (1968). The importance of water in the normal growth of larvae of Tenebrio molitor. Entomologia Experimentalis Et Applicata, 11(2), 149–168. https://doi.org/10.1111/j.1570-7458.1968.tb02041.x

Nino Loreto, D. (2019). Larval performance, morphological, behavioural and electrophisiological studies on Tenebrio molitor L. (Coleoptera: Tenebrionidae). Università Politecnica delle Marche.

Osimani, A., Milanović, V., Cardinali, F., Garofalo, C., Clementi, F., y Pasquini, M. et al. (2018). The bacterial biota of laboratory–reared edible mealworms (Tenebrio molitor L.): From feed to frass. International Journal Of Food Microbiology, 272, 49–60. https://doi.org/10.1016/j.ijfoodmicro.2018.03.001

Poveda Arias, J. (2019). Los microorganismos asociados a los insectos y su aplicación en la agricultura. Revista Digital Universitaria, 20(1). http://doi.org/10.22201/codeic.16076079e.2019.v20n1.a2

Rajagopal, R. (2009). Beneficial interactions between insects and gut bacteria. Indian Journal Of Microbiology, 49(2), 114–119. https://doi.org/10.1007/s12088-009-0023-z

Ramos–Elorduy, J., González, E., Hernández, A., y Pino, J. (2002). Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to Recycle Organic Wastes and as Feed for Broiler Chickens. Journal Of Economic Entomology, 95(1), 214–220. https://doi.org/10.1603/0022-0493-95.1.214

Ravzanaadii, N., Kim, S., Choi, W., Hong, S., y Kim, N. (2012). Nutritional Value of Mealworm, Tenebrio molitor as Food Source. International Journal Of Industrial Entomology, 25(1), 93–98. https://doi.org/10.7852/ijie.2012.25.1.093

Resh, V. y Cardé, R. (2009). Encyclopedia of Insects (2ª edición). Elsevier’s Science & Technology.

Schmidt, K., y Engel, P. (2021). Mechanisms underlying gut microbiota–host interactions in insects. Journal Of Experimental Biology, 224(2). https://doi.org/10.1242/jeb.207696

Siemianowska, E., Kosewska, A., Aljewicz, M., Skibniewska, K., Polak–Juszczak, L., Jarocki, A., y Jędras, M. (2013). Larvae of mealworm (Tenebrio molitor L.) as European novel food. Agricultural Sciences, 4(6), 287–291. https://doi.org/10.4236/as.2013.46041

Stoops, J., Crauwels, S., Waud, M., Claes, J., Lievens, B., y Van Campenhout, L. (2016). Microbial community assessment of mealworm larvae (Tenebrio molitor) and grasshoppers (Locusta migratoria migratorioides) sold for human consumption. Food Microbiology, 53, 122–127. https://doi.org/10.1016/j.fm.2015.09.010

Vandeweyer, D., Crauwels, S., Lievens, B., y Van Campenhout, L. (2017). Metagenetic analysis of the bacterial communities of edible insects from diverse production cycles at industrial rearing companies. International Journal Of Food Microbiology, 261, 11–18. https://doi.org/10.1016/j.ijfoodmicro.2017.08.018

Vargas Jerez, A., José Vivero, R., Uribe, S., Moreno, C. y Cadavid Restrepo, G. (2012). Interacción de microbiotas bacterianas e insectos. Boletín del Museo Entomológico, 4(3), 13–21.

Wang, Y. y Zhang, Y. (2015). Investigation of Gut–Associated Bacteria in Tenebrio molitor (Coleoptera: Tenebrionidae) Larvae Using Culture–Dependent and DGGE Methods. Annals of the Entomological Society of America, 108 (5), 941–949. https://doi.org/10.1093/aesa/sav079

Wei, L., Yue, F., Xing, L., Wu, S., Shi, Y., y Li, J. et al. (2020). Constant Light Exposure Alters Gut Microbiota and Promotes the Progression of Steatohepatitis in High Fat Diet Rats. Frontiers In Microbiology, 11. https://doi.org/10.3389/fmicb.2020.01975

Wynants, E., Crauwels, S., Lievens, B., Luca, S., Claes, J., y Borremans, A. et al. (2017). Effect of post–harvest starvation and rinsing on the microbial numbers and the bacterial community composition of mealworm larvae (Tenebrio molitor). Innovative Food Science & Emerging Technologies, 42, 8–15. https://doi.org/10.1016/j.ifset.2017.06.004

Published
13-12-2022
How to Cite
Ángel-Sánchez, A., & Galián, J. (2022). Study of the microbiota of the insectTenebrio molitorin different light conditions and with two diets based on by-products from the food industry. Anales de Veterinaria de Murcia, 36. https://doi.org/10.6018/analesvet.535101
Issue
Section
Trabajos Fin de Grado/Fin de Máster