PRESENTE Y FUTURO DEL DIAGNÓSTICO DE GESTACIÓN EN EL GANADO BOVINO

Autores/as

  • Margaux Sice Grupo de Investigación Agentes Microbiológicos Asociados a la Reproducción Animal (ProVaginBio). Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos. Facultad de Veterinaria de la Universidad CEU Cardenal Herrera de Valencia, CEU Universities. España.
  • Ángel Gómez Martín Grupo de Investigación Agentes Microbiológicos Asociados a la Reproducción Animal (ProVaginBio). Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos. Facultad de Veterinaria de la Universidad CEU Cardenal Herrera de Valencia, CEU Universities. España.
  • Jesús Gomis Almendro Grupo de investigación sobre Agentes Microbiológicos Asociados a la Reproducción (ProVaginBio), Universidad Cardenal Herrera-CEU, CEU Universities, 46113 Valencia, España
DOI: https://doi.org/10.6018/analesvet.503631
Palabras clave: ecografía, GPAG, progesterona, miARN, vacuno

Resumen

Para llevar a cabo el diagnóstico de gestación en el ganado bovino, se debe utilizar un método preciso, seguro, económico y que se pueda realizar de manera temprana. Aunque varias técnicas están actualmente disponibles en el mercado, otras siguen todavía en desarrollo, siendo posibles herramientas diagnósticas a tener en cuenta en un futuro. Por ello, el presente trabajo tiene como objetivo hacer una revisión sobre las diversas técnicas de diagnóstico de gestación (DG) y su potencial uso a nivel comercial, tanto en el presente como en el futuro, de la ganadería bovina. Los métodos directos para el DG, como son la palpación directa o la ecografía del tracto reproductor vía transrectal, siguen siendo los más empleados en la actualidad durante el control gestacional en el ganado vacuno. Son técnicas diagnósticas con buenos resultados y son interesantes a nivel económico, pero son herramientas invasivas y requieren una cierta experiencia por parte del técnico que las realiza. En general, se aplican a partir de la 3ª-4ª semana posterior a la inseminación artificial. Por otro lado, los métodos indirectos de DG son menos invasivos que los directos. Mediante este tipo de diagnósticos vía indirecta se puede detectar la presencia o ausencia de un embrión, sin visualizar directamente estructuras gestacionales. Existen métodos indirectos físicos, como la vigilancia del retorno al estro, así como técnicas indirectas bioquímicas, que permiten evaluar mediante el uso de kits rápidos ciertas sustancias como la progesterona (P4) o las Glicoproteínas Asociadas a la Gestación (GPAG), producidas durante la gestación de forma temprana. Otras técnicas novedosas y prometedoras, pero que todavía se encuentran en desarrollo, son la evaluación de moléculas como el interferón tau (IFNt), los micro-ARN (miARN) y/o los Factores de Gestación Temprana (FGT).

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abdullah, M., Mohanty, T., Kumaresan, A., Mohanty, A., Madkar, A., Baithalu, R. y Bhakat, M. (2014). Early pregnancy diagnosis in dairy cattle: economic importance and accuracy of ultrasonography. Adv. Anim. Vet. Sci., 2 (8), 464-467. doi: 10.14737/journal.aavs/2014/2.8.464.467

Balhara, A.K., Gupta, M., Singh, S., Mohanty, A.K. y Singh, I. (2013). Early pregnancy diagnosis in bovines: current status and future directions. Sci. World J. doi.org/10.1155/2013/958540.

Cai, X., Liu, Q., Zhang, X., Ren, Y., Lei, X., Li, S…Shi, D. (2017). Identification and analysis of the expression of microRNA from lactating and nonlactating mammary glands of the Chinese swamp buffalo. J. Dairy Sci., 100(3), 1971–1986. doi: 10.3168/jds.2016-11461.

De Bem, T.H., da Silveira, J.C., Sampaio, R.V, Sangalli, J.R., Oliveira, M.F., Ferreira, R.M, Silva, L.A., Perecin, F., King, W.A., Meirelles, F. y Ramos, E. (2017). Low levels of exosomal-miRNAs in maternal blood are associated with early pregnancy loss in cloned cattle. Sci. Rep., 7(1),1-11. doi: 10.1038/s41598-017-14616-1.

Ealy, A.D. y Seekford, Z.K. (2019). Symposium review: Predicting pregnancy loss in dairy cattle. J. Dairy Sci., 102(12), 11798–11804. doi: 10.3168/jds.2019-17176.

Ealy, A.D. y Yang, Q.E. (2009). Control of interferon-tau expression during early pregnancy in ruminants. Am. J. Reprod. Immunol., 61(2), 95–106. doi: 10.1111/j.1600-0897.2008.00673.x.

Esposito, L., Salzano, A., Russo, M., de Nicola, D., Prandi, A., Gasparrini, B., Campanile, G. y Neglia, G. (2020). Corpus Luteum Color Doppler Ultrasound and Pregnancy Outcome in Buffalo during the Transitional Period. Animals, 10(7), 1181. doi: 10.3390/ani10071181.

Filho, R.V.O., Franco, G.A., Reese, S.T., Dantas, F.G., Fontes, P.L.P., Cooke, R.F…Pohler, K.G. (2020). Using pregnancy associated glycoproteins (PAG) for pregnancy detection at day 24 of gestation in beef cattle. Theriogenology, 141, 128–133. doi: 10.1016/j.theriogenology.2019.09.014.

Fosgate, G.T., Motimele, B., Ganswindt, A. y Irons, P.C. (2017). A Bayesian latent class model to estimate the accuracy of pregnancy diagnosis by transrectal ultrasonography and laboratory detection of pregnancy-associated glycoproteins in dairy cows. Prev. Vet. Med., 145, 100–109. doi: 10.1016/j.prevetmed.2017.07.004.

Fricke, P.M. (2002). Scanning the Future-Ultrasonography as a Reproductive Management Tool for Dairy Cattle. J. Dairy Sci., 85(8), 1918–1926. doi: 10.3168/jds.S0022-0302(02)74268-9.

Fricke, P.M., Ricci, A., Giordano, J.O. y Carvalho, P.D. (2016). Methods for and Implementation of Pregnancy Diagnosis in Dairy Cows. Vet. Clin. North Am. Food Anim. Pract., 32(1), 165–180. doi: 10.1016/j.cvfa.2015.09.006.

Gábor, G., Kastelic, J.P., Abonyi-Tóth, Z., Gábor, P., Endrődi, T. y Balogh, O.G. (2016). Pregnancy Loss in Dairy Cattle: Relationship of Ultrasound, Blood Pregnancy-Specific Protein B, Progesterone and Production Variables. Reprod. Domest. Anim., 51(4), 467–473. doi: 10.1111/rda.12703.

Gargiulo, G.D., Shephard, R.W., Tapson, J., McEwan, A.L., Bifulco, P., Cesarelli, Jin, C., Al-Ani, A., Wang, N. y Van Schaik, A. (2012). Pregnancy detection and monitoring in cattle via combined foetus electrocardiogram and phonocardiogram signal processing. BMC Vet. Res., 8, 164. doi: 10.1186/1746-6148-8-164.

Giordano, J.O., Guenther, J.N., Lopes, G. y Fricke, P.M. (2012). Changes in serum pregnancy-associated glycoprotein, pregnancy-specific protein B, and progesterone concentrations before and after induction of pregnancy loss in lactating dairy cows. J. Dairy Sci., 95(2), 683–697. doi: 10.3168/jds.2011-4609.

Green, J.C., Okamura, C.S., Poock, S.E. y Lucy, M.C. (2010). Measurement of interferon-tau (IFN-tau) stimulated gene expression in blood leukocytes for pregnancy diagnosis within 18-20d after insemination in dairy cattle. Anim. Reprod. Sci., 121(1), 24–33. doi: 10.1016/j.anireprosci.2010.05.010.

Guelfi, G., Stefanetti, V., De Luca, S., Giontella, A., Barile, V.L. y Barbato, O. (2017). Serum microRNAs in buffalo cows: Potential biomarkers of pregnancy. Res. Vet. Sci., 115, 294–300. doi: 10.1016/j.rvsc.2017.06.001.

Hassan, M., Arshad, U., Bilal, M., Sattar, A., Avais, M., Bollwein, H. y Ahmad, N. (2019). Luteal blood flow measured by Doppler ultrasonography during the first three weeks after artificial insemination in pregnant and non-pregnant Bos indicus dairy cows. J. Reprod. Dev., 65(1), 29–36. doi: 10.1262/jrd.2018-084.

Hori, K., Matsuyama, S., Nakamura, S., Iwata, H., Kuwayama, T., Miyamoto, A. y Shirasuna, K. (2019). Age‐related changes in the bovine corpus luteum function and progesterone secretion. Reprod. Domest. Anim. 54(1), 23-30. doi: 10.1111/rda.13303.

Kanazawa, T., Seki, M., Ishiyama, K., Kubo, T., Kaneda, Y., Sakaguchi, M. Izaike, Y. y Takahashi, T. (2016). Pregnancy prediction on the day of embryo transfer (Day 7) and Day 14 by measuring luteal blood flow in dairy cows. Theriogenology, 86(6), 1436–1444. doi: 10.1016/j.theriogenology.2016.05.001.

Lonergan, P., Forde, N. y Spencer, T. (2016). Role of progesterone in embryo development in cattle. Reprod. Fertil. Dev., 28(1), 66–74. doi: 10.1071/RD15326.

López-Gatius F., Andreu-Vasquez C., López-Helguera I. y Garcia-Ispierto I. (2012). Control ecográfico de la gestación. El problema de las gestaciones gemelares. XVII Congreso internacional ANEMBE de medicina bovina. Santander, 18-19-20 abril 2012. Oviedo: AMEMBE, 39-41.

Matsui, M. y Miyamoto, A. (2009). Evaluation of ovarian blood flow by colour Doppler ultrasound: practical use for reproductive management in the cow. Vet. J., 181(3), 232–240. doi: 10.1016/j.tvjl.2008.02.027.

Neglia, G., Restucci, B., Russo, M., Vecchio, D., Gasparrini, B., Prandi, A, Di Palo, R., D’Occhio, M.J. y Campanile, G. (2015). Early development and function of the corpus luteum and relationship to pregnancy in the buffalo. Theriogenology, 83(6), 959–967. doi: 10.1016/j.theriogenology.2014.11.035.

Pohler, K.G., Reese, S.T., Franco, G.A., Oliveira, R.V., Paiva, R., Fernandez, L., de Melo, G., Vasconcelos, J.L.M., Cooke, R. y Poole, R.K. (2020). New approaches to diagnose and target reproductive failure in cattle. Anim. Reprod., 17(3). doi:10.1590/1984-3143-AR2020-0057.

Quintela, L.A., Barrio, M., Peña, A.I., Becerra, J.J., Cainzos, J., Herradón, P.G. y Díaz, C. (2012). Use of ultrasound in the reproductive management of dairy cattle. Reprod. Domest. Anim., 47(3), 34–44. doi: 10.1111/j.1439-0531.2012.02032.x.

Racewicz, P., Sickinger, M., Włodarek, J. y Jaśkowski, J.M. (2016). Ultrasonographic diagnosis of early pregnancy in cattle using different ultrasound systems. Tierarztl. Prax. Ausg. G Grosstiere Nutztiere, 44(3), 151–156. doi: 10.15653/TPG-150816.

Reese, S.T., Franco, G.A., Poole, R.K., Hood, R., Fernadez Montero, L., Oliveira Filho, R. V, Cooke, R.F. y Pohler, K.G. (2020). Pregnancy loss in beef cattle: A meta-analysis. Anim. Reprod. Sci., 212, 106251. doi: 10.1016/j.anireprosci.2019.106251.

Reith, S. y Hoy, S. (2018). Review: Behavioral signs of estrus and the potential of fully automated systems for detection of estrus in dairy cattle. Animal: Int. J.Anim. Biosci., 12(2), 398–407. doi: 10.1017/S1751731117001975.

Romano, J.E., Thompson, J.A., Kraemer, D.C., Westhusin, M.E., Forrest, D.W. y Tomaszweski, M.A. (2007). Early pregnancy diagnosis by palpation per rectum: influence on embryo/fetal viability in dairy cattle. Theriogenology, 67(3), 486–493.

doi: 10.1016/j.theriogenology.2006.08.011.

Romano, J.E., Bryan, K., Ramos, R.S., Velez, J. y Pinedo, P. (2016). Effect of early pregnancy diagnosis by per rectum amniotic sac palpation on pregnancy loss, calving rates, and abnormalities in newborn dairy calves. Theriogenology, 85(3), 419–427. doi: 10.1016/j.theriogenology.2015.09.004.

Romano, J.E., Pinedo, P., Bryan, K., Ramos, R.S., Solano, K.G., Merchan, D. y Velez, J. (2017). Comparison between allantochorion membrane and amniotic sac detection by per rectal palpation for pregnancy diagnosis on pregnancy loss, calving rates, and abnormalities in newborn calves. Theriogenology, 90, 219–227. doi: 10.1016/j.theriogenology.2016.11.004.

Sá Filho, M.F., Penteado, L., Reis, E.L., Reis, T.A.N.P.S., Galvão, K.N. y Baruselli, P.S. (2013). Timed artificial insemination early in the breeding season improves the reproductive performance of suckled beef cows. Theriogenology, 79(4), 625–632. doi: 10.1016/j.theriogenology.2012.11.016.

Samir, H. y Kandiel, M.M. (2019). Accuracy of subjective evaluation of luteal blood flow by color Doppler ultrasonography for early diagnosis of pregnancy in Egyptian buffalo. Anim. Reprod. Sci., 208, 106129. doi: 10.1016/j.anireprosci.2019.106129.

Siqueira, L.G.B., Areas, V.S., Ghetti, A.M., Fonseca, J.F., Palhao, M.P., Fernandes, C.C. y Viana, J.H.M. (2013). Color Doppler flow imaging for the early detection of nonpregnant cattle at 20 days after timed artificial insemination. J. Dairy Sci., 96(10), 6461–6472. doi: 10.3168/jds.2013-6814.

Siqueira, L.G., Arashiro, E.K., Ghetti, A.M., Souza, E.D., Feres, L.F., Pfeifer, L.F, Fonseca, J.F. y Viana, J.H. (2019). Vascular and morphological features of the corpus luteum 12 to 20 days after timed artificial insemination in dairy cattle. J. Dairy Sci., 102(6), 5612–5622. doi: 10.3168/jds.2018-15853.

Szelényi, Z., Répási, A., de Sousa, N. M., Beckers, J.F. y Szenci, O. (2015). Accuracy of diagnosing double corpora lutea and twin pregnancy by measuring serum progesterone and bovine pregnancy-associated glycoprotein 1 in the first trimester of gestation in dairy cows. Theriogenology, 84(1), 76–81. doi: 10.1016/j.theriogenology.2015.02.014.

Wang, S., Zhang, H., Kou, H., Chen, X., Lu, Y., Li, L. y Wang, D. (2020). Early pregnancy diagnoses based on physiological indexes of dairy cattle: a review. Trop. Anim. Health Prod., 52(5), 2205–2212. doi: 10.1007/s11250-020-02230-9.

Yamamoto, N., Nishimura, R., Gunji, Y., Saneshige, M., Kiriki, K. y Hishinuma, M. (2018). Effect of post artificial insemination treatment with two different progesterone intravaginal devices on conception and synchronization of the returning estrus in Japanese Black cows. J. Vet. Med. Sci., 80(12), 1822–1828. doi: 10.1292/jvms.17-0094.

Youngquist, R.S. y Threlfall, W.R. (2006). Current Therapy in Large Animal Theriogenology. (2ª ed.), Missouri, Estados Unidos: Saunders

Publicado
05-04-2022
Cómo citar
Sice, M. ., Gómez Martín, Ángel, & Gomis Almendro, J. (2022). PRESENTE Y FUTURO DEL DIAGNÓSTICO DE GESTACIÓN EN EL GANADO BOVINO. Anales de Veterinaria de Murcia, 36. https://doi.org/10.6018/analesvet.503631
Número
Sección
Revisiones