Isolation and characterization of FS01, a lytic bacteriophage infecting Salmonella typhimurium

Authors

  • Abraham José Guillén Vásquez Laboratorio de Bacteriófagos, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú
  • Kattya Zumaeta Laboratorio de Bacteriófagos, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú
  • Miguel Talledo Laboratorio de Bacteriófagos, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú
DOI: https://doi.org/10.6018/analesbio.47.08
Keywords: Bacteriofago, fago litico, Salmonella Typhimurium, Siphoviridae

Abstract

S

Salmonella contamination represents a health and economic problem. This study isolated and characterized a lytic bacteriophage, FS01, active against S. typhimurium. FS01 showed a MOI of 1, an adsorption rate of 1.9x10-9 mL/min, and a growth curve with an eclipse period of 10 minutes, a latency period of 15 minutes, and a burst size of 10 virions per cell. It has an icosahedral capsid (64.4 nm) and a flexible tail (182.2 nm), suggestive of Siphoviridae family affiliation, with a narrow host range. It is thermally stable between 40-60  ºC for 30 minutes, viable within a pH range of 6–9, and sensitive to chloroform and UV light. FS01 inhibited bacterial growth starting at 3 hours. FS01 exhibits properties of a promising biocontrol agent for decontaminating food and surfaces.

Downloads

Download data is not yet available.
Metrics
Views/Downloads
  • Abstract
    3
  • pdf (Español (España))
    5

References

Abedon ST. 2023. Bacteriophage adsorption: Likelihood of virion encounter with bacteria and other factors affecting rates. Antibiotics 12(4): 723. http://doi.org/10.3390/antibiotics12040723

Abhisingha M, Dumnil J & Pitaksutheepong C. 2020. Efficiency of phage cocktail to reduce Salmonella Typhimurium on chicken meat during low temperature storage. LWT. 129: 109580. https://doi.org/10.1016/j.lwt.2020.109580

Adriaenssens E & Brister JR. 2017. How to name and classify your phage: an informal guide. Viruses, 9(4):70. https://doi.org/10.3390/v9040070

Breitbart M, Bonnain C, Malki K, & Sawaya N. 2018. Phage puppet masters of the marine microbial realm. Nature microbiology 3(7): 754-766. http://doi. org/10.1038/s41564-018-0166-y

Cao Y, Ma R, Li Z, Mao X, Li Y, Wu Y, … Wang X. 2022. Broad-spectrum Salmonella phages PSE-D1 and PST-H1 controls Salmonella in foods. Viruses, 14(12): 2647. https://doi.org/10.3390/v14122647

Chénard C, Chan A, Vincent W & Suttle C. 2015. Polar freshwater cyanophage S-EIV1 represents a new widespread evolutionary lineage of phages. The ISME Journal 9(9): 2046-2058. https://doi.org/10.1038/ismej.2015.24

Chevallereau A, Pons B, van Houte S & Westra E. 2022. Interactions between bacterial and phage communities in natural environments. Nature Reviews Microbiology 20(1): 49-62. https://doi.org/10.1038/s41579-021-00602-y

Choi I, Park BDH & Lee C. 2020. Exploring the feasibi­lity of Salmonella typhimurium-specific phage as a novel bio-receptor. Exploring feasibility Salmonella typhimurium-specific phage as a Novel bio-receptor. Journal of Animal Science and technology 62(5): 668-681. https://doi.org/10.5187/jast.2020.62.5.668

Dion MB, Oechslin F, & Moineau S. 2020. Phage diversity, genomics and phylogeny. Nature Reviews Microbiology 18(3): 125-138. https://doi.org/10.1038/s41579-019-0311-5

Duc H, Son H, Honjoh K & Miyamoto T. 2018. Isolation and application of bacteriophages to reduce Salmonella contamination in raw chicken meat. LWT 91: 353-360. https://doi.org/10.1016/j.lwt.2018.01. 072

Duc H, Son H, Yi H, Sato J & Ngan P. 2020. Isolation, characterization and application of a polyvalent phage capable of controlling Salmonella and Escherichia coli O157: H7 in different food matrices. Food Research International 131: 108977. https://doi.org/10.1016/j.foodres.2020.108977

García-Salazar I & Porras-Nicho M. 2018. Aislamiento de bacteriófagos de Pseudomonas aeruginosa multidrogo–resistente en aguas de tres ríos de la provincia de Lima-Perú. Universidad Nacional Mayor de San Marcos. Available in [http://cybertesis.unmsm.edu.pe/handle/20.500.12672/8241]. Bachelor Thesis

Hammer Ø, Harper DAT & Ryan PD. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1): [9].

Harada L, Silva EC, Campos WF, Del Fiol FS, Vila M, Dąbrowska K, ... Balcão V M. 2018. Biotechnological applications of bacteriophages: State of the art. Microbiological Research 212: 38-58. https://doi.org/10.1016/j.micres.2018.04.007

Harper D, Abedon ST, Burrowes BH & McConville ML. 2021. Bacteriophages. Springer International Publishing.

Huang C, Shi J, Ma W, Li Z, Wang J, Li J & Wang X. 2018. Isolation, characterization, and application of a novel specific Salmonella bacteriophage in different food matrices. Food Res Int. 111:631–641. https://doi:10.1016/j.foodres.2018.05.071

Huang C, Virk SM, Shi J, Zhou Y, Willias SP, Morsy MK, ... Li J. 2018. Isolation, Characterization, and Application of Bacteriophage LPSE1 Against Salmonella enterica in Ready to Eat (RTE) Foods. Frontiers in Microbiology 9(5): 1046. https://doi.org/10.3389/fmicb.2018.01046

Hyman P. 2019. pharmaceuticals Phages for Phage Therapy: Isolation, Characterization, and Host Range Breadth. Pharmaceuticals 12(1):35 https://doi.org/10.3390/ph12010035

Islam MS, Hu Y, Mizan MFR, Yan T, Nime I, Zhou Y & Li J. 2020. Characterization of Salmonella Phage LPST153 That Effectively Targets Most Prevalent Salmonella Serovars. Microorganisms 8(7): 1089. https://doi.org/10.3390/microorganisms8071089

Islam MS, Zhou Y, Liang L, Nime I, Yan T, Willias SP, … Li J. 2020. Application of a Broad Range Lytic Phage LPST94 for Biological Control of Salmonella in Foods. Microorganisms 8(2): 247. https://doi.org/10. 3390/microorganisms8020247

Islam MS, Zhou Y, Liang L, Nime I, Liu K, Yan T, … Li J. 2019. Application of a phage cocktail for control of Salmonella in foods and reducing biofilms. Viruses 11(9): 841. https://doi.org/10.3390/v11090841

Jebri S, Hmaied F, Yahya M, Ben Ammar A & Hamdi M. 2016. Total coliphages removal by activated sludge process and their morphological diversity by transmission electron microscopy. Water Science and Technology 74(2): 318-323. https://doi.org/10.2166/wst.2016.178

Jung S, Ashrafudoulla M, Kang I & Ha SD. 2023. Isolation and characterization of multidrug-resistant Salmonella-specific bacteriophages and their antibacterial efficiency in chicken breast. Poultry Science, 102(11): 103073. https://doi.org/10.1016/j.psj.2023. 103073

Jung L, Ding T &, Ahn J. 2017. Evaluation of lytic bacteriophages for control of multidrug-resistant Salmonella Typhimurium. Annals of Clinical Microbiology and Antimicrobials 16(1): 66. https://doi.org10.1186/s12941-017-0237-6

Kim SH, Park YR, Jung H & Park MK. 2022. Characterization of a lytic phage KFS-EC3 infecting multiple foodborne pathogens. Korean Journal of Food Preservation 29(7): 1022-1034. https://doi.org/10.11002/kjfp.2022.29.7.1022

Luo XQ, Wang P, Li JL, Ahmad M, Duan L, Yin LZ, … Li WJ. 2022. Viral community-wide auxiliary metabolic genes differ by lifestyles, habitats, and hosts. Microbiome 10(1): 190. https://doi.org/10.1186/s40168-022-01384-y

Manohar P, Tamhankar AJ, Lundborg CS & Ramesh N. 2018. Isolation, characterization and in vivo efficacy of Escherichia phage myPSH1131. PloS ONE 13(10): e0206278. https://doi.org/10.1371/journal.pone.0206278

Megha PU, Murugan S & Harikumar PS. 2017. Isolation and characterization of lytic coliphages from sewage water. Journal of Pure & Applied Microbiology 11(1): 559-565. http://doi.org/10.22207/JPAM.11.1.73

Moye ZD, Woolston J & Sulakvelidze A. 2018. Bacteriophage applications for food production and processing. Viruses 10(4): 205. http://doi.org/10.3390/v10040205

Mushegian AR. 2020. Are there 1031 virus particles on earth, or more, or fewer?. Journal of Bacteriology, 202(9):jb.00052-20. https://doi.org/10.1128/jb.00052-20

Mutlu N & Şahin M. 2019. Isolation and Characterization of Listeria monocytogenes Bacteriophages from Environmental Sources in Kars-Turkey. Pakistan Veterinary Journal 39(1): 91–95. https://doi.org/10.29261/pakvetj/2018.090

Ni P, Xu Q, Yin Y, Liu D, Zhang J, Wu Q, … Wang D. 2018. Prevalence and characterization of Salmonella serovars isolated from farm products in Shanghai. Food Control 85: 269-275. https://doi.org/10.1016/ zj.foodcont.2017.10.009

Nobrega FL, Vlot M, De Jonge PA, Dreesens LL, Beaumont H J, Lavigne R, … Brouns SJ. 2018. Targeting mechanisms of tailed bacteriophages. Nature Reviews Microbiology 16(12): 760-773. https://doi.org/10.1038/s41579-018-0070-8

Oluwarinde BO, Ajose DJ, Abolarinwa TO, Montso PK, Njom HK & Ateba CN. Molecular characterization and safety properties of multi drug-resistant Escherichia coli O157:H7 bacteriophages. BMC Microbiology 24: 528. https://doi.org/10.1186/s12866-024-03691-w

O’Sullivan L, Bolton D, McAuliffe O & Coffey A. 2019. Bacteriophages in Food Applications: From Foe to Friend. Annual Review of Food Science and Technology 10(1): 151-172. https://doi.org/10.1146/annurev-food-032818-121747

Pereira C, Moreirinha C, Lewicka M, Almeida P, Clemente C, Cunha Â, ... Almeida A. 2016. Bacteriophages with potential to inactivate Salmonella Typhimurium: Use of single phage suspensions and phage cocktails. Virus Research 220: 179-192. https://doi.org/10.1016/j.virusres.2016.04.020

Petsong K, Benjakul S, Chaturongakul S, Switt A & Vongkamjan K. 2019. Lysis Profiles of Salmonella Phages on Salmonella Isolates from Various Sources and Efficiency of a Phage Cocktail against S. enteritidis and S. typhimurium. Microorganisms. 7(4): 2–18. https://doi.org/10.3390/microorganisms7040100

Rahaman M, Rahman M, Rahman M, Khan M, Hossen M, Parvej S, & Ahmed S. 2014. Poultry Salmonella specific bacteriophage isolation and characterization. Bangladesh Journal of Veterinary Medicine, 12(2), 107-114. https://doi.org/10.3329/bjvm.v12i2.21264

Segundo-Arizmendi N, Gómez-García J, Flores-Cuevas K, Duque-Montaño BE, López-Villegas EdO, Baltazar-Hernández E & Torres-Ángeles O. 2017. Caracterización parcial del bacteriófago S1, lítico contra Salmonella enterica, con posible uso farmacéutico. Revista Mexicana de Ciencias Farmaceúticas 48(2): 36-48.

Singh VP. 2018. Recent approaches in food bio-preservation-a review. Open veterinary journal 8(1): 104-111. https://doi.org/10.4314/ovj.v8i1.16

Tao C, Yi Z, Zhang Y, Wang Y, Zhu H, Afayibo DJ, ... & Yu S. 2021. Characterization of a broad-host-range lytic phage SHWT1 against multidrug-resistant Salmonella and evaluation of its therapeutic efficacy in vitro and in vivo. Frontiers in Veterinary Science 8: 683853. https://doi.org/10.3389/fvets.2021.683853

Taslem J, Awe A, Guo W, Batra H, Ganesh H, Wu X & Zhu J. 2022. Understanding bacteriophage tail fiber interaction with host surface receptor: the key “blueprint” for reprogramming phage host range. International Journal of Molecular Sciences 23(20): 12146. https://doi.org/10.3390/ijms232012146

Thung TY, Lee E, Mahyudin NA, Anuradha K, Mazlan N, Kuan CH, … & Radu S. 2019. Evaluation of a lytic bacteriophage for bio-control of Salmonella Typhimurium in different food matrices. LWT 105: 211-214. https://doi.org/10.1016/j.lwt.2019.02.033

Wang C, Chen Q, Zhang C, Yang J, Lu Z, Lu F & Bie X. 2017. Characterization of a broad host-spectrum virulent Salmonella bacteriophage fmb-p1 and its application on duck meat. Virus Research 236:14-23. https://doi.org/10.1016/j.virusres.2017.05.001

Wdowiak M, Mierzejewski PA, Zbonikowski R, Bończak B & Paczesny J.2023. Congo red protects bacteriophages against UV irradiation and allows for the simultaneous use of phages and UV for membrane sterilization. Environmental Science: Water Research & Technology 9(3): 696-706. https://doi.org/10.1039/D2EW00913G

Yan T, Liang L, Yin P, Zhou Y, Mahdy Sharoba A, Lu Q & Li J. 2020. Application of a Novel Phage LPSEYT for Biological Control of Salmonella in Foods. Microorganisms. 8(3): 2-16. https://doi.org/10.3390/microorganisms8030400

Yang Q, Ding Y, Nie R, Yao L, Wang X, Zhou M, & Wang X. 2020. Characterization of a novel T7-like Salmo­nella Typhimurium (ATCC 13311) bacteriophage LPST144 and its endolysin. LWT 123: 109034. https://doi.org/10.1016/j.lwt.2020.109034

Yang M, Liang Y, Huang S, Zhang J, Wang J, Chen H & Tan Z. 2020. Isolation and characterization of the novel phages vB_VpS_BA3 and vB_VpS_CA8 for lysing Vibrio parahaemolyticus. Frontiers in Microbiology 11: 259. https://doi.org/10.3389/fmicb.2020.00259

Yildirim Z., Sakіn T & Çoban F. 2018. Isolation of lytic bacteriophages infecting Salmonella Typhimurium and Salmonella Enteritidis. Acta Biologica Hungarica 69(3): 350-369. https://doi.org/10.1556/018.68.2018.3.10

Zhang H, Yang Z, Zhou Y, Bao H, Wang R, Li T, … & Zhou X. 2018. Application of a phage in decontaminating Vibrio parahaemolyticus in oysters. International Journal of Food Microbiology 275: 24-31. https://doi.org/10.1016/j.ijfoodmicro.2018.03.027

Published
01-09-2025
How to Cite
Guillén Vásquez, A. J., Zumaeta, K., & Talledo, M. (2025). Isolation and characterization of FS01, a lytic bacteriophage infecting Salmonella typhimurium. Anales De Biología, (47), 49–58. https://doi.org/10.6018/analesbio.47.08
Issue
Section
Articles

Similar Articles

You may also start an advanced similarity search for this article.