Aedes albopictus Skuse, 1884 (Diptera: Culicidae) and associated culicidae in anthropised areas of Belém-PA (Brazil), a municipality in eastern Amazonia

Authors

  • Karen Monteiro Moy Laboratório de Biologia de Parasitos e Vetores, Instituto de Ciências Biológicas, Universidade Federal do Pará, Augusto Corrêa 01, CEP 66075-110, Belém-PA, Brasil.
  • Ingrid Nazaré Garcia Rosário Laboratório de Biologia de Parasitos e Vetores, Instituto de Ciências Biológicas, Universidade Federal do Pará, Augusto Corrêa 01, CEP 66075-110, Belém-PA, Brasil.
  • Cinthia Holanda de Souza Laboratório de Biologia de Parasitos e Vetores, Instituto de Ciências Biológicas, Universidade Federal do Pará, Augusto Corrêa 01, CEP 66075-110, Belém-PA, Brasil.
  • Tatiane Rodrigues de Oliveira Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Bloco 17, CEP05508-000, São Paulo-SP, Brasil.
  • Karin Kirchgatter Instituto Pasteur, São Paulo 01027-000, SP, Brasil.
  • Ivoneide Maria da Silva Laboratório de Biologia de Parasitos e Vetores, Instituto de Ciências Biológicas, Universidade Federal do Pará, Augusto Corrêa 01, CEP 66075-110, Belém-PA, Brasil.
  • Sergio Rodriguez Málaga Universidade Federal do Pará
DOI: https://doi.org/10.6018/analesbio.46.02
Keywords: COI, Aedes albopictus, Amazonian Region

Supporting Agencies

  • Este trabajo fue desarrollado con financiamiento propio

Abstract

The first record of Aedes albopictus in the State of Pará, in the Brazilian Amazon, was carried out in 2003. The present study aimed to describe the Culicidae fauna and the abundance of Ae. albopictus in four areas with different degrees of anthropization, in the city of Belém-PA. For this, larvae were collected in natural breeding sites, proving that Ae. albopictus corresponded to 63.4% of the mosquitoes collected, being the predominant species in areas with the highest degree of anthropization. We also identified two haplotypes derived from partial sequences of the COI gene of 16 mosquitoes from the area with the greatest degree of anthropology, which are grouped with specimens from tropical and temperate countries, respectively. Our results demonstrate the adaptation of Ae. albopictus to urban areas of the Amazon region.

Downloads

Download data is not yet available.

References

Abuseir S, Naccache F, Jung K, Adwan G, Strube C & Becker SC. 2020. Genetic characterization of Asian tiger mosquito Aedes albopictus in Palestine. Bulletin of Insectology 73: 225-232.

Ali H, Muhammad A, Bala NS, Wang G, Chen Z, Peng Z & Hou Y. 2018. Genomic evaluations of Wolbachia and mtDNA in the population of coconut hispine beetle, Brontispa longissima (Coleoptera: Chrysomelidae). Molecular Phylogenetics and Evolution 127: 1000-1009. https://doi.org/10.1016/j.ympev.2018.07.003

Armbruster P, Damsky WE Jr, Giordano R, Birungi J, Munstermann LE & Conn JE. 2003. Infection of New- and Old-World Aedes albopictus (Diptera: Culicidae) by the intracellular parasite Wolbachia: implications for host mitochondrial DNA evolution. Journal of Medical Entomology 40(3): 356-360. https://doi.org/10.1603/0022-2585-40.3.356

Auguste AJ, Adams AP, Arrigo NC, Martinez R, Travassos da Rosa AP, Adesiyun AA, ... Weaver SC. 2010. Isolation and characterization of sylvatic mosquito-borne viruses in Trinidad: enzootic transmission and a new potential vector of Mucambo virus. American Journal of Tropical Medicine and Hygiene 83 (6): 1262-1265. https://doi.org/10.4269/ajtmh.2010.10-0280

Bartoňová AS, Konvička M, Marešová J, Wiemers M, Ignatev N, Wahlberg N, … Fric Z. 2021. Wolbachia affects mitochondrial population structure in two systems of closely related Palaearctic blue butterflies. Scientific Reports 11(1): 3019 [14]. https://doi.org/10.1038/s41598-021-82433-8

Cariou M, Duret L & Charlat S. 2017. The global impact of Wolbachia on mitochondrial diversity and evolution. Journal of Evolutionary Biology 30(12): 2204-2210. https://doi.org/10.1111/jeb.13186

Carrazco-Montalvo A, Ponce P, Villota SD, Quentin E, Muñoz-Tobar S, Coloma J & Cevallos V. 2022. Establishment, genetic diversity, and habitat suitability of Aedes albopictus populations from Ecuador. Insects 13 (3): 305 [13]. https://doi.org/10.3390/insect s13030305

Carvalho RG, Lourenço-de-Oliveira R & Braga IA. 2014. Updating the geographical distribution and frequency of Aedes albopictus in Brazil with remarks regarding its range in the Americas. Memorias do Instituto Oswaldo Cruz 109(6): 787–796. https://doi.org/10.1590/0074-0276140304

Ceretti-Júnior W, Medeiros-Sousa AR, Multini LC, Urbinatti PR, Vendrami DP, Natal D, ... Marrelli MT. 2014. Immature mosquitoes in bamboo internodes in municipal parks, city of São Paulo, Brazil. Journal of the American Mosquito Control Association 30 (4): 268-274. https://doi.org/10.2987/14-6403r.1

Ceretti-Junior W, de Oliveira-Christe R, Rizzo M, Strobel RC, de Matos-Junior MO, de Mello MH, ... Marrelli MT. 2015. Species composition and ecological aspects of immature mosquitoes (Diptera: Culicidae) in bromeliads in urban parks in the city of São Paulo, Brazil. Journal of Arthropod-Borne Diseases 10(1): 102-12.

Chala B & Hamde F. 2021. Emerging and re-emerging vector-borne infectious diseases and the challenges for control: a review. Frontiers in Public Health 9: 715759 [10]. https://doi.org/10.3389/fpubh.2021.715759

Consoli RAGB & Lourenço-de-Oliveira R. 1994. Principais mosquitos de importância sanitária do Brasil. Rio de Janeiro, Brasil: Editora FIOCRUZ.

Costa-Ribeiro MCV, Lourenço-de-Oliveira R & Failloux AB. 2006. Higher genetic variation estimated by microsatellites compared to isoenzyme markers in Aedes aegypti from Rio de Janeiro. Memorias do Instituto Oswaldo Cruz 101(8): 917-921. https://doi.org/10.1590/S0074-02762006000800015

Davis MW & Jorgensen EM. 2022. ApE, A Plasmid Editor: A Freely Available DNA Manipulation and Visualization Program. Frontiers in Bioinformatics 2:818619 [15]. https://doi.org/10.3389/fbinf.2022.818619

Dorvillé LFM. 1996. Mosquitoes as bioindicators of forest degradation in southeastern Brazil, a statistical evaluation of published data in the literature. Studies on Neotropical Fauna and Environment 31: 68-78. https://doi.org/10.1076/snfe.31.2.68.13331

Duong CV, Kang JH, Nguyen VV & Bae YJ. 2021. Genetic Diversity and Population Structure of the Asian Tiger Mosquito (Aedes albopictus) in Vietnam: Evidence for Genetic Differentiation by Climate Region. Genes (Basel) 12(10):1579 [15]. https://doi.org/10.3390/genes12101579

Ermakov OA, Simonov E, Surin VL, Titov SV, Brandler OV, Ivanova NV & Borisenko AV. 2015. Implications of hybridization, NUMTs, and overlooked diversity for DNA Barcoding of Eurasian ground squirrels. PLoS One 10(3): e0120631 [19]. https://doi.org/10.1371/journal.pone.0117201

Fang Y, Zhang J, Wu R, Xue B, Qian Q & Gao B. 2018. Genetic Polymorphism Study on Aedes albopictus of Different Geographical Regions Based on DNA Barcoding. BioMed Research International 2018: 1501430 [10]. https://doi.org/10.1155%2F2018%2F1501430

Fikrig K & Harrington LC. 2021. Understanding and interpreting mosquito blood feeding studies: the case of Aedes albopictus. Trends in Parasitology 37(11): 959-975. https://doi.org/10.1016/j.pt.2021.07.013

Forattini OP. 1986. Identificação de Aedes (Stegomyia) Albopictus (Skuse) no Brasil. Revista De Saúde Pública 20(3): 244-245. https://doi.org/10.1590/S0034-89101986000300009

Forattini OP. 2002. Culicidologia médica. Volume 2: Identificação, biologia e epidemiologia. São Paulo, Brasil: Edusp.

Garcia-Rejon JE, Navarro JC, Cigarroa-Toledo N & Baak-Baak CM. 2021. An Updated Review of the Invasive Aedes albopictus in the Americas; Geographical Distribution, Host Feeding Patterns, Arbovirus Infection, and the Potential for Vertical Transmission of Dengue Virus. Insects 12(11): 967 [13]. https://doi.org/10.3390/insects12110967

Hammon WM & Reeves WC. 1943. Laboratory transmission of St. Louis Encephalitis virus by three genera of mosquitoes. Journal of Experimental Medicine 78(4): 241-253. https://doi.org/10.1084/jem.78.4.241

Harbach, Ralph E. 2023. Valid Species List. Mosquito Taxonomic Inventory, no. April: 1-61. Disponible en: https://mosquito-taxonomic-inventory.myspecies.inf o/valid-species-list (accedido 09-V-2023).

Hu Y, Xi Z, Liu X, Wang J, Guo Y, Ren D, … Liu Q. 2020. Identification and molecular characterization of Wolbachia strains in natural populations of Aedes albopictus in China. Parasites & Vectors 13: 28 [14]. https://doi.org/10.1186/s13071-020-3899-4

Huelsenbeck JP & Ronquist F. 2001. MRBAYES: Bayesian Inference of Phylogenetic Trees. Bioinformatics 17: 754-755. https://doi.org/10.1093/bioinformatics/17.8.754

Ibáñez-Justicia A, van de Vossenberg B, Warbroek T, Teekema S, Jacobs, F, Zhao T, … Stroo A. 2022. Tracking Asian tiger mosquito introductions in the Netherlands using Nextstrain. Journal of the European Mosquito Control Association 40(1): 11-21. https://doi.org/10.52004/JEMCA2021.0006

Kamgang B, Brengues C, Fontenille D, Njiokou F, Simard F & Paupy C. 2011. Genetic structure of the tiger mosquito, Aedes albopictus, in Cameroon (Central Africa). PLoS One 6(5):e20257 [10]. https:// doi.org/10.1371/journal.pone.0020257

Kamgang B, Wilson-Bahun TA, Irving H, Kusimo MO, Lenga A & Wondji CS. 2018. Geographical distribution of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) and genetic diversity of invading population of Ae. albopictus in the Republic of the Congo. Wellcome Open Research 3: 79 [18]. https://doi.org/10.12688/wellcomeopenres.14659.3

Khan SU, Ogden NH, Fazil AA, Gachon PH, Dueymes GU, Greer AL & Ng V. 2020. Current and Projected Distributions of Aedes aegypti and Ae. albopictus in Canada and the U.S. Environmental Health Perspectives 128(5): 57007 [13]. https://doi.org/10.1289/EHP5899

Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, … Higgins DG. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. https://doi.org/10.1093/bioinformatics/btm404

Lee E, Yang SC, Kim TK, Noh BE, Lee HS, Kim H … Lee WG. 2020. Geographical Genetic Variation and Sources of Korean Aedes albopictus (Diptera: Culicidae) Populations. Journal of Medical Entomology 57(4): 1057-1068. https://doi.org/10.1093/jme/tjz254

Lima JA, Sousa AW, Silva SP, Barros LJL, Medeiros DBA, Dias-Junior AG, ... Chiang JO. 2016. Caracterização antigênica e molecular de vírus isolados de mosquitos capturados no Estado do Pará, Brasil. Revista Pan-Amazônica de Saúde, 7: 199-208. https://dx.doi.org/10.5123/s2176-62232016000500022

Lucati F, Delacour S, Palmer JRB, Caner J, Oltra A, Paredes-Esquivel C, ... Ventura M. 2022. Multiple invasions, Wolbachia and human-aided transport drive the genetic variability of Aedes albopictus in the Iberian Peninsula. Scientific Reports 12(1): 20682 [15]. https://doi.org/10.1038/s41598-022-24963-3

Lwande OW, Obanda V, Lindström A, Ahlm C, Evander M, Näslund J & Bucht G. 2020. Globe-Trotting Aedes aegypti and Aedes albopictus: Risk Factors for Arbovirus Pandemics. Vector-Borne and Zoonotic Diseases 20(2):71-81. https://doi.org/10.1089/vbz.2019.2486

Martins VE, Alencar CH, Kamimura MT, Carvalho-Araújo FM, De Simone SG, Dutra RF & Guedes MI. 2012. Occurrence of natural vertical transmission of dengue-2 and dengue-3 viruses in Aedes aegypti and Aedes albopictus in Fortaleza, Ceará, Brazil. PLoS One 7(7): e41386 [9]. https://doi.org/10.1371/journal.pone.0041386

McGregor BL, Connelly CR & Kenney JL. 2021. Infection, Dissemination, and Transmission Potential of North American Culex quinquefasciatus, Culex tarsalis, and Culicoides sonorensis for Oropouche Virus. Viruses 13(2): 226 [11]. https://doi.org/10.3390/v130 20226

Medeiros-Sousa AR, Ceretti-Júnior W, de Carvalho GC, Nardi MS, Araujo AB, Vendrami DP & Marrelli MT. 2015. Diversity and abundance of mosquitoes (Diptera:Culicidae) in an urban park: larval habitats and temporal variation. Acta Tropica 150: 200-209. https://doi.org/10.1016/j.actatropica.2015.08.002

Montagner FRG & Silva OS, Jahnke SM. 2018. Mosquito species occurrence in association with landscape composition in green urban areas. Brazilian Journal of Biology 78(2):233–239. https://doi.org/10.1590/1519-6984.04416

Nicholas KB & Nicholas HB. 1997. GeneDoc: a Tool for Editing and Annotating Multiple Sequence Alignments. Pittsburgh: Pittsburgh Supercomputing Center’s National Resource for Biomedical Supercomputing.

Oliveira VC & Almeida Neto LC. 2017. Ocorrência de Aedes aegypti e Aedes albopictus em bromélias cultivadas no Jardim Botânico Municipal de Bauru, São Paulo, Brasil. Cadernos De Saúde Pública 33(1): e00071016 [7]. https://doi.org/10.1590/0102-311X00071016

Passos RA, Marques GRAM, Voltolini JC & Condino MLF. 2003. Dominância de Aedes aegypti sobre Aedes albopictus no litoral sudeste do Brasil. Revista De Saúde Pública 37(6): 729–734. https://doi.org/10.1590/S0034-89102003000600007

Paupy C, Delatte H, Bagny L, Corbel V & Fontenille D. 2009. Aedes albopictus, an arbovirus vector: from the darkness to the light. Microbes and Infection 11(14-15): 1177-1185. https://doi.org/10.1016/j.micinf.2009.05.005

Puerta-Guardo H, Contreras-Perera Y, Perez-Carrillo S, Che-Mendoza A, Ayora-Talavera G, Vazquez-Prokopec G, … Manrique-Saide P. 2020. Wolbachia in Native Populations of Aedes albopictus (Diptera: Culicidae) From Yucatan Peninsula, Mexico. Journal of Insect Science 20(5): 16 [7]. https://doi.org/10.1093/jisesa/ieaa096

Rambaut A. 2010. FigTree: Tree Figure Drawing Tool Version 1.4.0; Institute of Evolutionary Biology, University of Edinburgh: Edinburgh, UK. Disponible en http://tree.bio.ed.ac.uk/software/figtree/ (accedido el 20-II-2024).

Rezende HR, Romano CM, Claro IM, Caleiro GS, Sabino EC, Felix AC, ... Vicente CR. 2020. First report of Aedes albopictus infected by Dengue and Zika virus in a rural outbreak in Brazil. PLoS One 15(3): e0229847 [11]. https://doi.org/10.1371/journal.pone.0229847

Sambrook J, Fritsch EF & Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. 2nd ed. Plainview, N.Y.: Cold Spring Harbor Laboratory Press.

Segura MNO, Monteiro HAO, Lopes ES, Silva OV, Castro FC & Vasconcelos PFC. 2003. Encontro de Aedes albopictus no Estado do Pará, Brasil. Revista De Saúde Pública 37(3): 388–389. https://doi.org/10.1590/S0034-89102003000300020

Segura MNO & Castro FC. 2007. Culicídeos na Amazônia Brasileira. Belém: Instituto Evandro Chagas, FIOCRUZ.

Silva AM, Nunes V & Lopes J. 2004. Culicídeos associados a entrenós de bambu e bromélias, com ênfase em Aedes (Stegomyia) albopictus (Diptera, Culicidae) na Mata Atlântica, Paraná, Brasil. Iheringia. Série Zoologia 94(1): 63-66. https://doi.org/10.1590/S0073-47212004000100011

Shin J & Jung J. 2021. Comparative population genetics of the invasive mosquito Aedes albopictus and the native mosquito Aedes flavopictus in the Korean peninsula. Parasites & Vectors 14(1): 377 [10]. https://doi.org/10.1186/s13071-021-04873-5

Shin J, Rahman MM, Kim J, Marcombe S & Jung J. 2023. Genetic Diversity of Dengue Vector Aedes albopictus Collected from South Korea, Japan, and Laos. Insects 14: 297 [17]. https://doi.org/10.3390/insects14030297

Sousa SS, Silva BP, Tadei WP, Silva JS, Bezerra JMT & Pinheiro VCS. 2021. Reproductive profile of Aedes aegypti and Aedes albopictus from an urban area endemic for arboviruses in the Northeast region of Brazil. Research, Society and Development 10(9): e6310917631 [12].

https://doi.org/10.33448/rsd-v10i9.17631

Souto RNP & Pimentel CHC. 2006. Culicídeos (Diptera: Culicidae) da Região dos Lagos nos Municípios de Amapá, Pracuúba e Tartarugalzinho. En: Inventário biológico das áreas do Sucuriju e região dos lagos, no Amapá (Costa Neto SV, ed). Macapá-AP: IEPA, 131-142

Tamura K, Stecher G, & Kumar S. 2021. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Molecular Biology and Evolution 38: 3022-3027. https://doi.org/10.1093/molbev/msab120

Wei Y, He S, Wang J, Fan P, He Y, Hu K, … Zheng X. 2022. Genome-wide SNPs reveal novel patterns of spatial genetic structure in Aedes albopictus (Diptera Culicidae) population in China. Frontiers in Public Health 10: 1028026 [13]. https://doi.org/10.3389/fpubh.2022.1028026

Zhang YK, Ding XL, Zhang KJ & Hong XY. 2013. Wolbachia play an important role in affecting mtDNA variation of Tetranychus truncatus (Trombidiformes: Tetranychidae). Environmental Entomology 42(6): 1240-1245. https://doi.org/10.1603/EN13085

Zhang HD, Gao J, Li CX, Ma Z, Liu Y, Wang G, … Zhao TY. 2022. Genetic Diversity and Population Genetic Structure of Aedes albopictus in the Yangtze River Basin, China. Genes (Basel) 13(11): 1950 [13]. https://doi.org/10.3390/genes13111950

Zhong D, Lo E, Hu R, Metzger ME, Cummings R, Bonizzoni M, ... Yan G. 2013. Genetic analysis of invasive Aedes albopictus populations in Los Angeles County, California and its potential public health impact. PLoS One 8(7): e68586 [9]. https://doi.org/10.1371/journal.pone.0068586

Zou R, Liang C, Dai M, Wang X, Zhang X & Song Z. 2020. DNA barcoding and phylogenetic analysis of bagrid catfish in China based on mitochondrial COI gene. Mitochondrial DNA A DNA Mapping, Sequencing, and Analysis 31(2):73-80. https://doi.org/10.1080/24701394.2020.1735379

Published
25-03-2024
How to Cite
Monteiro Moy, K., Garcia Rosário, I. N., Holanda de Souza, C., Rodrigues de Oliveira, T., Kirchgatter, K. ., da Silva, I. M. ., & Rodriguez Málaga, S. (2024). Aedes albopictus Skuse, 1884 (Diptera: Culicidae) and associated culicidae in anthropised areas of Belém-PA (Brazil), a municipality in eastern Amazonia. Anales de Biología, (46), 7–17. https://doi.org/10.6018/analesbio.46.02
Issue
Section
Articles