In-vitro pathogenicity of Akanthomyces lecanii and Metarhizium anisopliae against the aphid Aphis craccivora
Supporting Agencies
- Abubakar Tafawa Balewa University
- Tetfund NRF
Abstract
Aphis craccivora is a serious pest of cowpea worldwide and responsible for low crop yields. Entomopathogenic fungi offer environmentally friendly alternatives to conventional synthetic pesticides. In the present study, the biological control potential of Akanthomyces lecanii and Metarhizium anisopliae against cowpea aphid was evaluated under laboratory conditions. These fungi were used in the laboratory bioassays: Conidial suspensions with different concentrations of spores of each isolate were sprayed on filter-paper discs on which bean leaves were placed as food for the insects. Aphid mortality was observed and recorded for 10 days. The concentration of 1x108 conidia/ml was high enough to cause insect mortality in all the isolates tested while the control mortality was 10%. This study confirms the potential of using the indigenous fungi as biological control agents against the cowpea aphids even at low concentrations.
Downloads
References
Abdel-Raheem MAI, Abla FA, Saad & Abdel-Rahman IE. 2021. Entomopathogenic Fungi on Fabae bean Aphid, Apis craccivora (Koch) (Hemiptera:Aphidae). Rom. Biotechnology Letter. 26(4): 2862-2868. http://dx. doi.org/10.25083/rbl/26.4/2862-2868
Abbott WS. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18: 265-267. https://doi.org/10.1093/jee/18.2.265a
Alavo TBC, Sermann H & Bochow H. 2002. Biocontrol of Aphids using Verticillium lecanii in Greenhouse: Factors reducing the effectiveness of entomopathogenic fungus. Archives of Phytopathology and Plant Protection 34:6:407-424. https://doi.org/10.1080/713710567
Ali S, Farooq MA, Sajjad A, Ullah MI, Qureshi AK, Siddique B, . . . Asghar A. 2018. Compatibility of entomopathogenic fungi and botanical extracts against the wheat aphid Sitobion avenae (Fab.)(hemiptera: Aphididae). Egyptian Journal of Biological Pest Control. 28:97 https://doi.org/10.1186/s41938-018-0101-9
Aliyu HU & Fidelis LK. 2021. Occurrence of insect pathogenic fungi in some locations within Federal University of kashere, Gombe State, Nigeria. Jewel Journal of Scientific Research 6(1-2): 34-37.
Aliyu HU, Isma’il S, Yakubu MN, Deba FA., Ladan MA, Haruna U S, . . . Abdulhameed A. 2022. Biomass production and field trial of entomopathogenic fungi Metarhizium anisopliae (Metschn.) against some insect pest of agricultural importance. EC Pharmacology and Toxicology Journal. 10:4:28-34.
Amnuaykanjanasin A, Jirakkakul J, Panyasiri C, Panyarakkit P, Nounurai P, Chantasingh D, . . . Tanticharoen M. 2013. Infection and colonization of tissues of the aphid Myzus persicae and cassava mealybug Phenacoccus manihoti by the fungus Beauveria bassiana. BioControl 58: 379–391. https://doi.org/10.1007/s10526-012-9499-2
Asi MR, Bashir M, Mirza JH, Afzal M & Imran S. 2009. In vitro Efficacy of Entomopathogenic Fungi against Cabbage aphid, Brevicryne brassicae L. Pakistan Entomologist.
Barra-Bucarei L, Vergara P & Cortes A. 2016. Conditions to optimize mass production of Metarhizium anisopliae (metschn.) Sorokin 1883 in different substrates. Chilean Journal of Agricultural Research 76:4:448-454. http://dx.doi.org/10.4067/S0718-58392016000400008
Birkhofer K & Wolters V. 2012. The global relationship between climate, net primary production and the diet of spiders. Global Ecology and Biogeography, 21, 100–108. https://doi.org/10.1111/j.1466-8238.2011.00654.x
Blackman RL & Eastop VF. 2000. Aphids on the World’s crops. An identification and information guide. London: Wiley and Chichester.
Butt TM, Coates CJ, Dubovskiy IM & Ratcliffe NA. 2016. Entomopathogenic Fungi: New Insights into Host-Pathogen Interactions. Advances in Genetics 94: 307-364. http://dx.doi.org/10.1016/bs.adgen.2016.01.006
Castillo-Lopez D, Zhu-Salzman K, Ek-Ramos MJ & Sword GA. 2014. The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus) and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions. PLoSOne. 9(8): e103891. http://dx.doi.org/10.1371/journal.pone.0103891
Chandler DG, Davidson G, Grant WP, Greaves J & Tatchell GM. 2008. Microbial biopesticides for integrated crop management: an assessment of envirnomrntal and regulatory sustainability. Trends in Food Science and Technology. 19: 275-283. https://doi.org/10.1016/j.tifs.2007.12.009
De La Pava N & Sepúlveda-Cano PA. 2015. Biología del áfido negro (Aphis craccivora: Aphididae) sobre fríjol caupi (Vigna unguiculata, Fabaceae). Acta Biológica Colombiana 20(3): 93-97. http://dx.doi.org/10.15446/abc.v20n3.43064
Derakshan A, Rabidra RJ & Ramunujam B, 2007. Efficacy of different isolates of entomopathogenic fungi against Brevicoryne brassicae (Linnaeus) at different temperature and humidities. Journal of Biological Control 21(1): 65-72. https://doi.org/10.18311/jbc/2007/3892
Desneux N, Barta RJ, Hoelmer KA, Hopper KR & Heimpel GE. 2009. Multifaceted determinants of host specificity in an aphid parasitoid. Oecologia 160(2): 387-398. https://doi.org/10.1007/s00442-009-1289-x
Díaz BM, López-Lastra CC, Oggerin M, Fereses A & Rubio V. 2008. Identificación de hongos entomopatógenos asociados a pulgones en cultivos hortícolas en la zona centro de la Península Ibérica. Boletín de Sanidad Vegetal Plagas 34: 287-296.
Diehl E, Sereda E, Wolters V & Birkhofer K. 2013. Effects of predator specialization, host plant and climate on biological control of aphids by natural enemies: a meta‐analysis. Journal of Applied Ecology 50(1): 262-270. https://doi.org/10.1111/1365-2664.12032
Dixon AFG. 2000. Insect predator-prey dynamics: ladybird beetles and biological control. Cambridge, UK: Cambridge University Press.
Fernández-Grandon GM, Harte SJ, Ewany J, Bray D & Stevenson PC. 2020. Additive effect of botanical insecticide and entomopathogenic fungi on pest mortality and the behavioral response of its natural enemy. Plants 9(2): 173 [14] https://doi.org/10.3390/plants9020173
Fournier V & Brodeur J. 2000. Dose-response susceptibility of pests aphids (Homoptera:Aphididae) and their control on hydroponically grown lettuce with the entomopathogenic fungus Verticillium lecanii, azadirachtin and insecticidal soap. Environmental Entomology 29(3): 568-578. https://doi.org/10.1603/0046-225X-29.3.568
Gebremariam A, Chekol T & Assefa F. 2021. Phenotypic, molecular, and virulence characterization of entomopathogenic fungi, Beauveria bassiana (Balsam) Vuillemin, and Metarhizium anisopliae (Metschn.) Sorokin from soil samples of Ethiopia for the development of mycoinsecticides. Heliyon 7(5): e07091 [12]. https://doi.org/10.1016/j.heliyon.2021.e07091
Gurlek S, Sevim A, Sezgin MF & Servim E. 2018. Isolation and characterization of Beauveria and Metarhizium spp. from walnut fields and their pathogenicity against the codling moth, Cydiapomonella (L.) (Lepidoptera:Tortricidae). Egyptian Journal of Biological Pest control 28: 50 [6]. https://doi.org/10.1186/s41938-018-0055-y
Im Y, Park SE, Lee SY, Kim JC & Kim JS. 2022. Early-stage defense mechanism of the cotton Aphid Aphis gossypii against infection with the insect-killing fungus Beauveria bassiana JEF-544. Frontiers in Immunology 13: 907088 [11] https://doi.org/10.3389/fimmu.2022.907088
Iqbal M, Gogi MD, Atta B, Nisar MJ, Arif MJ & Jared N. 2021. Assessment of pathogenicity of Beauveria bassiana, Metarhizium anisopliae, Verticillium lecanii and Bacillus thuringiensis var Kurstaki against Bactrocera cucurbitae coquillett (Diptera:tephritidae) via diet-bioassay technique under controlled conditions. International Journal of Tropical Insect Science 41(2): 1129-114. https://doi.org/10.1007/s42690-020-00298-2
Jaramillo-Naranjo JT. 2015. Tabla de vida de Aphis craccivora (Hemiptera: Aphididae) en fríjol caupí (Vigna unguiculata (l.) y determinación de sus enemigos naturales en Santa Marta D.T.C. e H. Universidad del Magdalena. Tesis de licenciatura.
Keyser CA, Jensenb B & Meyling NV. 2016. Dual effects of Metarhizium spp. and Clonostachys rosea against an insect and a seed-borne pathogen in wheat. Pest Management Science. 72: 517–526. https://doi.org/10.1002/ps.4015
Kokalis-Burelle N, Porter DM, Rodríguez-Kábana R, Smith DH & Subrahmanyam, P. 1984. Compendium of peanut diseases. The American Phytopatology Society.
Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M & Goettel MS. 2015. Insect pathogens as biological control agents: Back to the future. Journal of Invertebrate Pathology 132: 1-41. https://doi.org/10.1016/j.jip.2015.07.009
Manfrino RG, Zumoffen L, Salto CE & López-Lastra CC 2014. Natural occurrence of entomophthoroid fungi of aphid pests on Medicago sativa L. in Argentina. Revista argentina de microbiología 46(1): 49-52. https://doi.org/10.1016/S0325-7541(14)70048-3
Motta-Delgrado PA & Murcia-Ordonez B. 2011. Entomopathogenic fungi as an alternative for biological pest control. Revista Ambiente & Água - An Interdisciplinary Journal of Apllied Science 6(2): 77-90. http://dx.doi.org/10.4136/ambi-agua.187
Mora MAE, Castilho AMC & Fraga ME. 2017. Clasification and infection mechanism of entomopathogenic fungi. Arquivos do Istituto Biologico 84: e0552015 [10] https://doi.org/10.1590/1808-1657000552015
Nazir T, Basit A, Hanan A, Majeed MZ & Qiu D. 2019. In Vitro Pathogenicity of Some Entomopathogenic Fungal Strains against Green Peach Aphid Myzus persicae (Homoptera: Aphididae). Agronomy 9(1): 7 [12]. https://doi.org/10.3390/agronomy9010007
Obopile M. 2006. Economic threshold and injury levels for control of cowpea aphid, Aphis craccivora Linnaeus (Homoptera: Aphididae) on cowpea. African Plant Protection 12: 111–115.
Obopile M & Ositile B. (2010) Life table and population parameters of cowpea aphid, Aphis craccivora Koch (Homoptera: Aphididae) on five cowpea Vigna unguiculata (L. Walp.) varieties, Journal of Pest Science 83(1): 9-14. https://doi.org/10.1007/s10340-009-0262-0
Rabindra RJ & Ramanujam B. 2007. Microbial control of sucking pests using entomopathogenic fungi. Journal of Biological Control 21 (Sp. Iss.): 21-28.
Sandhu SS, Sharma AK, Beniwal V, Goel G, Batra P, Kumar A, . . . Malhotra S. 2012. Myco-Biocontrol of Insect Pests: Factors Involved, Mechanism, and Regulation. Journal of Pathogens 2012: ID126819 [10] https://doi.org/10.1155/2012/126819
Santos TS, dos Passos EM, Seabra MGJ, Souto EB, Severino P & Mendonça MC. 2021. Entomopathogenic fungi biomass production and extracellular biosynthesis of silver nanoparticles for bioinsecticide action. Applied Sciences 11(6): 2465 [13] https://doi.org/10.3390/app11062465
Selvaraj K & Kaushik HD. 2014. Greenhouse evaluation of Beauveria bassiana (Balsamo) Vuillemin against Aphis craccivora (Das) on fenugreek. Journal of Applied and Natural Science 6(2): 852-856. https://doi.org/10.31018/jans.v6i2.545
Simbaqueba R, Serna F & Pósada-Flórez FJ. 2014). Curaduría, morfología e identificación de áfidos (Hemiptera: Aphididae) del Museo Entomológico Unab. Primera aproximación. Boletín Científico Centro de Museos de Historia Natural 18(1): 222-245.
Sinha KK, Choudhary AK & Priyanka K. 2016. Entomopathogenic Fungi. In Ecofriendly Pest Management for Food Security (Omkar I, ed). Cambridge, USA: Academic press, pp. 475-505.
Vasanthara DB & Kumarswami T. Elements of Economic Entomology. Madras: Popular Book Depot.
Vestergaard S, Gillespie AT, Butt TM, Schreiter G & Eilenberg J. 1995. Pathogenicity of the hyphomycete fungi Verticillium lecanii and Metarhizium anisopliae to the western flower thrips, Frankliniella occidentalis. Biocontrol Science and Technology 5(2): 185-192. https://doi.org/10.1080/09583159550039909
Wang JB, St. Leger RJ & Wang C. 2016. Advances in genomics of entomopathogenic fungi 94: 67-105. http://dx.doi.org/10.1016/bs.adgen.2016.01.002
Wilding N & Brady BL. 1984. Neozygites fresenii. Descriptions of Fungi and Bacteria CABI (82) https://doi.org/10.1079/DFB/20056400817
Yakubu MN, Ladan MA, Deba FA, Isma’il S, Haruna US, Aliyu HU, . . . Tahir F. 2022. Biodiversity and virulence characterization of entomopathogenic fungi isolated from soils in different regions of Nigeria. Egyptian Journal of Biological Pest Control 32(1): 93 [8]. https://doi.org/10.1186/s41938-022-00593-9
Yun HG, Kim DJ, Gwak WS, Shin TY & Woo SD. 2017. Entomopathogenic fungi as dual control agents against both the pest Myzus persicae and phytopathogen Botrytis cinerea. Mycobiology 45(3): 192-198 https://doi.org/10.5941/myco.2017.45.3.192
Zehnder G, Gurr GM, Kuhne S, Wade MR, Wratten SD & Wyss E. 2007. Arthropod pest management in organic crops. Annual Review of Entomology 52: 57-80 https://doi.org/10.1146/annurev.ento.52.110405.091337
Copyright (c) 2023 Anales de Biología
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Las obras que se publican en esta revista están sujetas a los siguientes términos:
1. El Servicio de Publicaciones de la Universidad de Murcia (la editorial) conserva los derechos patrimoniales (copyright) de las obras publicadas, y favorece y permite la reutilización de las mismas bajo la licencia de uso indicada en el punto 2.
2. Las obras se publican en la edición electrónica de la revista bajo una licencia Creative Commons Reconocimiento-NoComercial-SinObraDerivada 3.0 España (texto legal). Se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que: i) se cite la autoría y la fuente original de su publicación (revista, editorial y URL de la obra); ii) no se usen para fines comerciales; iii) se mencione la existencia y especificaciones de esta licencia de uso.
3. Condiciones de auto-archivo. Se permite y se anima a los autores a difundir electrónicamente las versiones pre-print (versión antes de ser evaluada) y/o post-print (versión evaluada y aceptada para su publicación) de sus obras antes de su publicación, ya que favorece su circulación y difusión más temprana y con ello un posible aumento en su citación y alcance entre la comunidad académica. Color RoMEO: verde.