Evaluation of the mycelial growth of Trametes villosa (Sw.) Kreisel in media supplemented with copper (II) and sugarcane vinasse

Authors

  • Rosa Elena Caballero Facultad de Ciencias Naturales y Exactas, Universidad Autónoma de Chiriquí, 0427, Panamá
  • Mónica Miranda Facultad de Ciencias Naturales y Exactas, Universidad Autónoma de Chiriquí, 0427, Panamá
  • Víctor Jiménez Facultad de Ciencias Naturales y Exactas, Universidad Autónoma de Chiriquí, 0427, Chiriquí, Panamá
  • Pedro González Facultad de Ciencias Naturales y Exactas, Universidad Autónoma de Chiriquí, 0427, Chiriquí, Panamá
  • Tina Hofmann Facultad de Ciencias Naturales y Exactas, Universidad Autónoma de Chiriquí, 0427, Chiriquí, Panamá
DOI: https://doi.org/10.6018/analesbio.40.17
Keywords: Lignolytic fungi, In vitro growth, Biodegradation

Supporting Agencies

  • Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT) a través del Sistema Nacional de Investigación (SNI)
  • Laboratorio de Análisis de Aguas y Servicios Fisicoquímicos (UNACHI)
  • Central Industrial Chiricana S.A.

Abstract

The effect of different levels of copper (II) on the specific growth rate of Trametes villosa was evaluated. The strain was grown on 4% PDA and 4% PDA on a 25% (v/v) vinasse dilution. The specific growth rate was obtained from the mycelial area data which was modeled with the logistic equation. The best growth condition was 4% PDA in a 25% (v/v) vinasse dilution with copper (II) concentrations of 0.5 and 1.0 mM. These results indicate that under the utilized culture conditions, both supplements favor mycelial growth and provide essential information for potential processes of vinasse reuse and valorization.

Downloads

Download data is not yet available.

References

Aguiar MM, Ferreira LF & Monteiro R. 2010. Use of vinasse and sugarcane bagasse for the production of enzymes by lignocellulolytic fungi. Brazilian Archives of Biology and Technology 53 (5): 1245-1254. doi: 10.3923/pjbs.2010.355.361

Ahmed O, Sulieman AME & Elhardallou SB. 2013. Physicochemical, chemical and microbiological chara­cteristics of vinasse, a by-product from ethanol Industry. American Journal of Biochemistry 3(3): 80-83. doi: 10.5923/j.ajb.20130303.03

Alvillo-Rivera Angélica. 2016. Tratamiento de vinazas de tequila con hongos basidiomicetos. Ciudad de México, México: Universidad Nacional Autónoma de México. Tesis de Maestría.

AOAC. 2000. Official Methods of Analysis. Washington D.C: Association of Official Analytical Chemists (AOAC).

AWWA-APHA-WEF. 2012. Standard Methods for the Examination of Water and Wastewater, 22nd edition. Rice E, Baird R, Eaton A, Clescer L. (eds). Washin­gton D.C: AWWA-APHA-WEF.

Aparicio M, De Gracia D, Navarro G, Vega K, González L, Hoffman T, González P, Jiménez V, Caballero RE & Miranda M. 2013. Evaluación de la capacidad de crecimiento de cepas nativas de Flaviporus sp. y Trametes villosa en medios complejos preparados con vinazas de destilería. En Memorias del III Congreso de la Sociedad Latinoamericana de Biotecnología Ambiental y Algal (SOLABIAA), Panamá: Imprenta Universitaria de la Universidad Autónoma de Chiriquí. p. 134

Bakkiyaraj S, Aravindan R, Arrivukkarasan S & Viruthagiri T. 2013. Enhanced laccase production by Trametes hirsuta using wheat bran under submerged fermentation. International Journal on Chem Tech Research 5: (3) 1224-1238. Disponible en http://www. sphinxsai.com/2013/vol_5_3/pdf/CT=18(1224-1238) IPACT.pdf (accedido el 3-IV- 2017).

Bertrand B, Martínez-Morales F & Trejo-Hernández MR. 2013. Fungal laccases: Induction and production. Revista Mexicana de Ingeniería Química 12(3): 473-488. Disponible en http://www.redalyc.org/articulo .oa?id=62029966010 (accedido el 27-VII-2016).

Blanchard P, Devaney R & Hall, G. 1998. Ecuaciones Diferenciales. Washington: International Thomson Editors.

Chauhan R. 2016. Optimization of physical parameters for the growth of a white rot fungus-Trametes versicolor. International Journal of Information Research and Review. 03, Issue, 11, pp. 3125-3128. Disponible en: http://www.ijirr.com/sites/default/files/issues -files/1390.pdf (accedido el 15-VI-2017).

Deacon J. 2006. Fungal Biology. Malden, MA: Blackwell Publishing Ltd.

Elgueta S, Rubilar, O, Lima N & Diez C. 2012. Selection of white-rot fungi to formulate complex and coated pellets for Reactive Orange 165 decolourization. Electronic Journal of Biotechnology, 15(6): [13]. doi: 10.2225/vol15-issue6-fulltext-10

Ferreira LF, Aguiar M, Pompeu G, Messias TG & Monteiro RR. 2010. Selection of vinasse degrading microorganisms. World Journal of Microbiology and Biotechnology 26:1613–1621. doi: 10.1007/s11274-010-0337-3

Galhaup C & Haltrich D. 2001. Enhanced formation of laccase activity by the white-rot fungus Trametes pubescens in the presence of copper. Applied Microbiology and Biotechnology 56:225-232. doi:10. 1007/s002530100636

Gao D, Du L, Yang J, Wu WM & Liang H. 2010. A critical review of the application of white rot fungus to environmental pollution control. Critical Reviews in Biotechnology 30(1): 70–77. doi:10.3109/07388550903427272

Gomes E, Aguiar AP, Carvalho CC, Bonfá MRB, Da Silva R & Boscolo M. 2009. Ligninases production by basidiomycetes strains on lignocellulosic agricultural residues and their application on the decolorization of synthetic dyes. Brazilian Journal of Microbiology 40:31-39. doi:10.1590/S1517-8382200 9000100005

González P. 2006. Area Met v. 2.0. Chiriquí, Panamá: Facultad de Ciencias Naturales y Exactas, Universidad Autónoma de Chiriquí.

González JC, Medina SC, Rodriguez A, Osma JF, Alméciga-Díaz CJ & Sánchez OF. 2013. Production of Trametes pubescens laccase under submerged and semi-solid culture conditions on agro-industrial wastes. Plos One 8 (9): 1-14. doi: 10.1371/journal.pone.007.3721

Griffith G, Easton G, Dethrigde A, Roderick K, Edwards A, Worgan H, Nicholson J & Perkins W. 2007. Copper deficiency in potato dextrose agar causes reduced pigmentation in cultures of various fungi. FEMS Microbiology Letters 276: 165-171. doi: 10.1111/ j.1574-6968.2007.00923.x

Gutiérrez-Soto G, Medina-González G, Treviño-Ramirez J & Hernández-Luna C. 2015. Native macrofungi that produce lignin-modifyieng enzymes, cellulases, and xylanases with potential biotechnological applications. Bioresources 10 (4), 6676–6689. doi: 10.15376/biores.10.4.6676-6689.

Guzmán G & Piepenbring M. 2011. Los hongos de Panamá: introducción a la identificación de los macroscópicos. Xalapa, Veracruz: Instituto de Ecología, A.C.

Huang DL, Zeng GM, Feng CL, Hu S, Zhao MH, Lai C, Zhang Y, Jiang XY & Liu HL. 2010. Mycelial growth and solid-state fermentation of lignocellulosic waste by white-rot fungus Phanerochaete chrysosporium under lead stress. Chemosphere 81(9): 1091-1097. doi: 10.1016/j.chemosphere.2010.09.029

Jo WS, Kang MJ, Choi SY, Yoo YB, Seok SJ & Jung HY. 2010. Culture conditions for mycelial growth of Coriolus versicolor. Mycobiology 38(3): 195-202. doi:10.4489/MYCO.2010.38.3.195

Kaushik G. 2015. Bioremediation of industrial Effluents: Distillery effluent. En Applied Environmental Biotechnology: Present Scenario and Future Trends (Kaushik G, ed.). New Delhi: Springer, pp.19-32

Lee H, Jang Y, Choi YS, Kim MJ, Lee J et al. 2014. Biotechnological procedures to select white rot fungi for the degradation of PAH´s. Journal of Microbiological Methods 97, 56-62. http://dx.doi.org/10.1016/j.mimet.2013.12.007

López-Peña D, Gutiérrez A & Esqueda M. 2013. Cinética de crecimiento y composición química del micelio de Lentinula edodes cultivado en medio líquido suplementado con extractos de madera de vid. Revista Mexicana de Micología 37:51-59. Disponible en http://www.redalyc.org/articulo.oa?id=883310560 07 (accedido el 20-X-2016).

Macey R, Oster G & Zahley T. 2009. Berkeley Madonna. v. 8.3.18. Berkeley: University of California.

Martínez DA, Buglione MB, Filippi MV, Reynoso L, Rodríguez GE, & Agüero MS. 2015. Evaluación del crecimiento micelial de Pleurotus ostreatus y Agrocybe aegerita sobre orujos de pera. Anales de Biología 37: 1-10. doi: 10.6018/analesbio.37.1

Ministerio de Comercio e Industrias, 2000. Descarga de efluentes líquidos directamente a cuerpos y masas de agua superficiales y subterráneas. Reglamento Técnico DGNTI-COPANIT 35-2000, Panamá, República de Panamá. Disponible en: http://miambiente. ob.pa/images/file/COPANIT-35-2000DESCARGA%2 0DE%20EFLUENTES%20LIQUIDOS%20DIRECTA MENTE%20A%20CUERPOS%20Y%20MASAS%20 DE%20AGUA%20SUPERFICIALES%20Y%20SUB TERRANEAS.pdf (accedido el 11-V-2016)

Mitchell DA., Von Meien OF, Krieger N & Dalsenter FD. 2004. A review of recent developments in modeling of microbial growth kinetics and intraparticle phenomena in solid-state fermentation. Biochemical Engineering Journal 17 (1) 15-26. doi:10.1016/S1369-703X (03)00120-7

Paice, MG, Reid ID, Bourbonnais R, Archibald FS & Jurasek L. 1993. Manganese peroxidase produced by Trametes versicolor during pulp bleaching, demethylates and delignifies kraft pulp. Applied and Environmental Microbiology 59:260-265. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC202088/ (accedido el 2-III-2018).

Panikov NS. 2011. Microbial growth dynamics. En Comprehensive Biotechnology (Moo-Young M, ed.). Oxford: Elsevier. pp.257–283. doi: 10.1016/B978-0-08-088504-9.00032-5

Preussler C, Shimizu E, Villalba L & Zapata P. 2009. Inducción con cobre de la enzima lacasa en el hongo de pudrición blanca Trametes villosa (s.w.: Fr) Kreisel. Revista Ciencia y Tecnología. Año 11, No 12. 9-16. Disponible en: http://www.scielo.org. ar/scielo.php?script=sci_arttext&pid=S1851-758720 09000200002&lng=es&tlng=es (accedido el 9-VII-2017).

Quintero JC, Feijoo G & Lema JR. 2006. Producción de enzimas lignolíticas con hongos basidiomicetos cultivados sobre materiales lignocelulósicos. Revista de la Facultad de Química Farmacéutica de la Universidad de Antioquia, Colombia 13 (2): 61-67. Disponible en: http://www.redalyc.org/articulo.oa?id=169813258008 (accedido el 24-I-2018).

Rajarathnam S, Somasundaram M, Bano Z. 1998. Biodegradative and biosynthetic capacities of mushrooms: present and future strategies. Critical Reviews in Biotechnology 18 (2&3) 91-236.

Rhodes CJ. 2014. Mycoremediation (bioremediation with fungi) –growing mushrooms to clean the earth. Chemical Speciation & Bioavailability 26(3): 196-198. doi: 10.3184/095422914X14047407349335.

Rodríguez S, Fernández M, Bermúdez R & Morris S. 2003. Tratamiento de efluentes industriales coloreados con Pleurotus spp. Revista Iberoamericana de Micología 20: 164-168. Disponible en: http://www. reviberoammicol.com/2003-20/index.shtml (accedido el 16-XI-2017).

Rodríguez S, Bermúdez R, Serrat M & Kourouma A. 2006. Selección de cepas de Pleurotus ostreatus para la decoloración de efluentes industriales. Revista Mexicana de Micología 23: 9-15. Disponible en: http://www.redalyc.org/articulo.oa?id=88302303 (accedido el 13-IV-2017).

Rodríguez C & Hu B. 2017. Vinasse from sugarcane ethanol production: Better treatment or better utilization? Frontiers in Energy Research 5 [7]. doi: 10.3389/fenrg.2017.00007.

Ryan D, Leukes W & Burton S. 2007. Improving the bioremediation of phenolic wastewaters with Trametes versicolor. Bioresource Technology 98 (3): 579-587. doi: 10.1016/j.biortech.2006.02.001

Saithi S, Borg J, Nopharatana M & Tongta A. 2016. Mathematical modeling of biomass and enzyme production kinetics by Aspergillus niger in solid-state fermentation at various temperatures and moisture contents. Journal of Microbial and Biochemical Technology 8: 123-130. doi: 10.4172/19485948.1000274.

Selvam K, Priya M, Yamuna M. 2012. Decolourization of azo dyes and dye industry effluents by lignin degrading fungus Trametes versicolor. International Journal of Pharmaceutical & Biological Archives 3(3) 666-672. Disponible en: http://www.ijpba.info/ijpba/ index.php/ijpba/article/view/696 (accedido el 6-XII-2017).

Singh, Harbhajan. 2006. Mycoremediation: Fungal Bioremediation. New Yersey: John Wiley and Sons.

Strong PJ. 2011. Improved laccase production by Trametes pubescens MB89 in distillery wastewaters. Hindawi Volume 2011: [8]. doi: 10.4061/2011/ 379176.

Triphati A, Harsch N & Gupta N. 2007. Fungal Treatment of Industrial Effluents: A Mini Review. Life Sciences Journal 4 (7) 78-81. Disponible en: http://www.lifesciencesite.com/lsj/life0402/17_life040 2_78_81.pdf (accedido el 4-II-2018).

Viniegra-González G, Saucedo-Castañeda G, López-Isunza F & Favela-Torres E. 1993. Symmetric branching model for the kinetics of mycelial growth. Biotechnology and Bioengineering 42: 1-10. doi: 10.10 02/bit.260420102

Viswanath B, Rajesh B, Janardham A, Praven A, & Narasimha T. 2014. Fungal laccases and their application in bioremediation. Hindawi Publishing Corporation, volume 2014: [21]. doi:10.1155/2014/ 163242

Zanirun Z, Abd-Aziz S, Ling FH & Hassan MA. 2009. Optimization of lignin peroxidase production using locally isolated Pycnoporus sp. through factorial design. Biotechnology 8(3):296-305. doi: 10.3923/biotech.2009.296.305

Published
20-12-2018
How to Cite
Caballero, R. E., Miranda, M., Jiménez, V., González, P., & Hofmann, T. (2018). Evaluation of the mycelial growth of Trametes villosa (Sw.) Kreisel in media supplemented with copper (II) and sugarcane vinasse. Anales de Biología, (40), 153–160. https://doi.org/10.6018/analesbio.40.17
Issue
Section
Articles

Most read articles by the same author(s)