Behavioral and electrophysiological response of Rhynchophorus palmarum (L. 1764) (Coleoptera: Curculionidae) to volatile compounds of natives entomopatogenic fungi
Supporting Agencies
- CAPES
- FAPEAL
- INCT
Abstract
Rhynchophorus palmarum is a major pest of palms (Arecaceae) in Brasil. Both the behavioral (olfactometry) and electrophysiological (electroantennography, both alone and coupled to chromatography) of R. palmarum was studied against volatile organic compounds emitted by native entomopathogenic fungi isolated from Coruripe (Alagoas, Brazil). Two fungal isolates were identified by aeration system for 24 hours: CVAD01 and CVAD02. CVAD01 did not cause a significant behavioral response; however, male insects were significantly attracted to CVAD02 extracts. Electrophysiological bioassays showed antennal activity in both sexes to volatile components present in the two identified native fungi. The chromatographic analysis of the extracts indicated profiles of volatile organic compounds with the presence of three alcohol, three aromatics, three ketones, and four hydrocarbons.
Downloads
References
Alves SB. 1998. Controle microbiano de insetos. Piracicaba, SP: FEALQ, pp. 1163.
Antony BA, Johny J & Aldosari SA. 2018. Silencing the Odorant Binding Protein RferOBP1768 Reduces the Strong Preference of Palm Weevil for the Major Aggregation Pheromone Compound Ferrugineol. Frontiers in Physiology 9(252): 1-17. https://doi.org/10.3 389/fphys.2018.00252
Arimura G, Ozawa R, Horiuchi JI, Nishioka T & Takabayashi J. 2001. Plant-plant interactions mediated by volatiles emitted from plants infested by spider mites. Biochemical Systematics and Ecology 29(10): 1049-1061. https://doi.org/10.1016/S0305-19 78(01)00049-7
Bojke A, Tkaczuk C, Stepnowski P & Gołębiowski M. 2018. Comparison of volatile compounds released by entomopathogenic fungi. Microbiological Research 214: 129-136. https://doi.org/10.1016/j.micres.2018.06.011
Campos VP, Pinho RSC & Freire ES. 2010. Volatiles produced by interacting microorganisms potentially useful for the control of plant pathogens. Ciência e Agrotecnologia 34(3): 525-535. https://dx.doi.org/10. 1590/S1413-70542010000300001
Cysne AQ, Cruz BA, Cunha RNV & Rocha RNC. 2013. Flutuação populacional de Rhynchophorus palmarum (L.) (Coleoptera: Curculionidae) em palmeiras oleíferas no Amazonas. Acta Amazonica 43(2): 197-202. https://dx.doi.org/10.1590/S0044-59 672013000200010
Cobb NA. 1919. A new discovered nematode Aphelencus cocophilus n. sp. Connected with a serious disease of the coconut palm. West Indian Bulletin 17 (4): 203-210
Da Silva KB, da Silva CB, Lisboa-Ribeiro-Júnior KA, de Freitas JMD, de Freitas JD, Sanchez-Chia G, . . . Goulart Santana AE. 2019. Morphology and distribution of antennal sensilla of Automeris liberia (Lepidoptera: Saturniidae). Micron 123: 102682. https://dx. doi.org/10.1016/j.micron.2019.102682
De Hoog GS. 1972. The genera Beauveria, Isaria, Tritirachium, Paecylomicis and Acrodontium gen. nov. Studies in Mycology 1: 1-41.
Duarte AG, Lima IS, Navarro DMF & Sant'ana, AEG. 2003. Captura de Rhynchophorus palmarum L. (Coleoptera: curculionidae) em armadilhas iscadas com o feromônio de agregação e compostos voláteis de frutos do abacaxi. Revista Brasileira de Fruticultura 25 (1): 81-84. https://doi.org/10.1590/S0100-294 52003000100024
Doumbia M & Hemptinne JL, D. 1998. Assessment of patch quality by ladybirds: Role of larval tracks. Oecologia 113: 197-202. https://doi.org/10.1007/s0044 20050368
Dudareva N, Florence N, Dinesh NA & Orlova I. 2006. Plant Volatiles: Recent Advances and Future Perspectives. Critical Reviews in Plant Sciences 25(5): 417-440. https://doi.org/10.1080/073526806008999 73
Eitam A & Blaustein L. 2004. Oviposition habitat selecion by mosquitoes in response to predator (Notonecta maculata) density. Physiological Entomology 29: 188–191. https://doi.org/10.1111/j.0307-6962.20 04.0372.x
El-Sayed AM. 2019. The Pherobase: Database of Pheromones and Semiochemicals. Disponible en http://www.pherobase.com (accedido el 19-VI-2020)
Ferreira JMS, Araújo RPC & Sarro FB. 2002. Táticas de manejo das pragas. En: Coco, fitossanidade. (Ferreira JMS, ed.) Aracaju: Embrapa Tabuleiros Costeiros, pp. 83.
Ferreira DF. 2014. Sisvar: a Guide for its Bootstrap procedures in multiple comparisons. Ciencia e Agrotecnologia 38(2): 109-112. http://dx.doi.org/10.1590/S1413-70542014000200001
Fernandes EKK, Angelo IC, Rangel DEN, Bahiense TC, Moraes AML, Roberts DW & Bittencourt VREP. 2011. An intensive search for promising fungal biological control agents of ticks, particularly Rhipicephalus microplus. Veterinary Parasitology 182: 307-318. https://doi.org/10.1016/j.vetpar.2011.05.046
Fiaboe KKM & Roda AL. 2012. Predicting the potential worldwide distribution of the Red Palm Weevil Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) using ecological niche modeling. Florida Entomologist 95: 659-673. https://doi.org/10. 1653/024.095.0317
Fleischer J, Pregitzer P, Breer H & Krieger J. 2018. Access to the odor world: olfactory receptors and their role for signal transduction in insects. Cellular and Molecular Life Sciences 75: 485-508. https://doi.org/10.1007/s00018-017-2627-5
Giblin-Davis RM, Gries R, Gries G, Peña-Rojas E, Pinzón I, Peña JE, . . . Oehlschlager AC. 1997. Aggregation Pheromone of Palm Weevil, Dynamis borassi. Journal of Chemical Ecology 23: 2287-2297. https://doi.org/10.1023/B:JOEC.0000006674.64858. f2
Grostal P & Dicke M. 2000. Recognising one’s enemies: a functional approach to risk assessment by prey. Behavioral Ecology and Sociobiology 47: 258-264. https://doi.org/10.1007/s002650050663
Guarino S, Colazza S, Peri E, Bue PL, Germanà MP, Kuznetsova T & Soroker V. 2015. Behaviour-modifying compounds for management of the red palm weevil (Rhynchophorus ferrugineus Oliver). Pest Management Science 71(12):1605-1610. https://doi. org/https://doi.org/10.1002/ps.3966
Holighaus G & Rohlfs M. 2016. Fungal allelochemicals in insect pest management. Applied Microbiology and Biotechnology 100(13): 5681-5689. https://doi. org/10.1007/s00253-016-7573-x
Hung R, Lee S & Bennett J. 2015. Fungal volatile organic compounds and their role in ecosystems. Applied Microbiology and Biotechnology 99(8): 3395-3405. https://doi.org/10.1007/s00253-015-6494-4
Kandasamy D, Gershenzon J & Hammerbacher A. 2016. Volatile Organic Compounds Emitted by Fungal Associates of Conifer Bark Beetles and their Potential in Bark Beetle Control. Journal of Chemical Ecology 42(9): 952-969. https://doi.org/:10.1007/s10 886-016-0768-x
Kepler RM, Luangsa-Ard JJ, Hywel-Jones NL, Alisha-Quandt C, Sung GH, Rehner SA, . . . Shrestha B. 2017. A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales). IMA Fungus 8(2): 335-353. https://doi.org/10.5598/imafungus.2017.08 .02.08
Landero-torres I, Galindo-Tovar ME, Leyva-Ovalle OR, Murguía-González J, Presa-Parra E & García-Martínez MA. 2015. Evaluación de cebos para el control de Rhynchophorus palmarum (Coleóptera: Curculionidae) en cultivos de palmas ornamentales. Entomologia Mexico 2: 112–118
Leon-Martinez GA, Campos-Pinzon JC & Arguelles-Cardenas JH. 2019. Patogenicidad y autodiseminación de cepas promisorias de hongos entomopatógenos sobre Rhynchophorus palmarum L. (Coleoptera: Dryophthoridae). Agronomia Mesoamericana 30(3): 631-646.
Lopes RB, Laumann R, Dave-Moore MWMO & Faria M. 2014. Combination of the fungus Beauveria bassiana and pheromone in an attract-and-kill strategy against the banana weevil, Cosmopolites sordidus. Entomologia Experimentalis et Applicata 151: 75-85. https://doi.org/10.1111/eea.12171
Lopez-Llorca LV, Jalinas J & Marhuenda Egea FC. 2017. Compuestos orgánicos volátiles del hongo entomopatógeno Beauveria bassiana como repelentes de insectos. España, Patente de Invención, P201631534, 9 February 2017.
Lozano-Soria A, Picciotti U, Lopez-Moya F, Lopez-Cepero J, Porcelli F & Lopez-Llorca LV. 2020. Volatile Organic Compounds from Entomopathogenic and Nematophagous Fungi, Repel Banana Black Weevil (Cosmopolites sordidus). Insects 11(8): 509. https://doi.org/10.3390/insects11080509.
MAPA (Ministério da Agricultura, Pecuária e Abastecimento). 2018. Pragas Quarentenárias Presentes e Ausentes no Brasil. Instrução Normativa n° 39, publicado no Diário Oficial da União, n. 190, p. 11.
Meyling NV & Pell JK. 2006. Detection and avoidance of an entomopathogenic fungus by a generalist insect predator. Ecological Entomology 31(2): 162-171. https://doi.org/10.1111/j.0307-6946.2006.00781.x
Myles T. 2002. Alarm, aggregation, and defense by Reticulitermes flavipes in response to a naturally occurring isolate of Metarhizium anisopliae. Sociobiology 40: 243-255.
Moraes MCB, Laumann RA, Paula DP, Pareja M, Silva CC, Viera HG, . . . Borges M. 2008. Eletroantenografia: a antena do inseto como um biossensor. Boletin Tecnico Embrapa N. 270. Brasília: Embrapa Recursos Genéticos e Biotecnologia.
Morath S, Hung R, Bennett J. 2012. Fungal volatile organic compounds: A review with emphasis on their biotechnological potential. Fungal Biology Reviews 26: 73–83. https://doi.org/10.1016/j.fbr.2012.07.001
Moura JIL, Resende MLV, Sgrillo R., Nascimento LA, Romano R. 1990. Diferente tipos de armadilhas de iscas no controle de Rhynchophorus palmarun L. (Coleóptera: Curculionidae). Agrotrópica 2(3): 165-169.
Müller A, Faubert P, Hagen, M, Castell W, Polle A, Schnitzler JP & Rosenkranz M. 2013. Volatile profiles of fungi–chemotyping of species and ecological functions. Fungal Genetics and Biology 54: 25–33. https://doi.org/10.1016/j.fgb.2013.02.005
Murguía-González J, Landero-Torres I, Leyva-Ovalle OR, Galindo-Tovar ME, Llarena-Hernandez RC & Garcia-Martinez MA. 2018. Efficacy and Cost of Trap–Bait Combinations for Capturing Rhynchophorus palmarum L. (Coleoptera: Curculionidae) in Ornamental Palm Polycultures. Neotropical Entomologic 47: 302-310. https://doi.org/10.1007/s13744-0 17-0545-8
Nakashima Y & Senoo N. 2003. Avoidance of ladybird trails by an aphid parasitoid Aphidius ervi: active period and effects of prior oviposition experience. Entomologia Experimentalis et Applicata 109: 163-166. https://doi.org/10.1046/j.1570-7458.2003.0009 4.x
Oliveira FC, Barbosa F, Mafezolia J, Oliveira CF, Goncalves FJT & Freireb FCO. 2017. Perfil dos componentes voláteis produzidos pelo fungo fitopatógeno albonectria rigidiuscula em diferentes condições de cultivo. Química Nova 40(8): 890-894. https://doi. org/10.21577/0100-4042.20170064
Ormond EL, Thomas AP, Pell JK, Freeman SN & Roy HE. 2011. Avoidance of a generalist entomopathogenic fungus by the ladybird, Coccinella septempunctata. FEMS Microbiol Ecology 77(2): 229-237. https://doi.org/10.1111/j.1574-6941.2011.01100.x
Polezel DR. 2017. Fungos isolados de ninhos iniciais da formiga Atta sexdens rubropilosa: análise do potencial para biocontrole de formigas-cortadeiras. Rio Claro, San Pablo, Brasil: Universidad Estadual Paulista. Disertación de Maestria.
Rännbäck LM, Cotes B, Anderson P, Rämert B & Meyling NV. 2015. Mortality risk from entomopathogenic fungi affects oviposition behavior in the parasitoid wasp Trybliographa rapae. Journal of Invertebrate Pathology 124: 78-86. https://doi.org/10.1016/ j.jip.2014.11.003
Rehner SA, Minnis AM, Sung GH, Luangsa-ard JJ, Devotto L & Humber RA. 2011. Phylogeny and systematics of the anamorphic, entomopathogenic genus Beauveria. Mycologia 103(5): 1055-1073. https://doi. org/10.3852/10-302
Rochat D, Dembilio O, Jacas J, Suma P, La Pergola A, Hamidi R, Kontodimas D & Soroker V. 2017. Rhynchophorus ferrugineus: Taxonomy, Distribution, Biology, and Life Cycle. En Handbook of Major Palm Pests (Soroker V & Colazza S, eds.), Hoboken (NJ): John Wiley & Sons Ltd, pp. 69-104. https://doi. org/10.1002/9781119057468.ch4
Ruiz-Montiel C, González-Hernández H, Leyva J, Llanderal-Cazares C, Cruz-López L & Rojas JC. 2003. Evidence for a male-produced aggregation pheromone in Scyphophorus acupunctatus Gyllenhal (Coleoptera: Curculionidae). Journal of Economic Entomology 96(4): 1126-1131. https://doi.org/10.1093/jee/96.4.1126
Riffell JA, Abrell L & Hildebrand JG. 2008. Physical processes and real-time chemical measurement of the insect olfactory environment. Journal of Chemical Ecology 34(7): 837-853. https://doi.org/10.1007/s10 886-008-9490-7
Said I, Tauban D, Renou M, Mori K & Rochat D. 2003. Structure and function of the antennal sensilla of the palm weevil Rhynchophorus palmarum (Coleoptera, Curculionidae). Journal of Insect Physiology 49(9): 857–872. https://doi.org/10.1016/S0022-1910(03)00 137-9
Seiedy M, Heydari S, & Tork M. 2015. Orientation of Hippodamia variegata (Coleoptera: Coccinellidae) to healthy and Beauveria bassiana-infected Aphis fabae (Hemiptera: Aphididae) in an olfactometer system. Turkish Journal of Zoology 39: 53-58.
Silva JM, Nascimento MS, Cristo CCN, Silva CE, Silva CS & Santos TMC. 2019. Capítulo 10. Antagonismo de Thielaviopsis paradoxa e Fusarium oxysporum por fungos rizosféricos associados à cactáceas do semiárido alagoano e eficiência de duas técnicas de avaliação. En Impactos das Tecnologias nas Ciências Agrárias 3 (dos Santos CA & Ribeiro JC, eds.). Ponta Grossa, Brasil: Atena Editora, pp. 77-85. http://doi.org/10.22533/at.ed.61419300910
Stenberg JA, Heil M, Åhman I & Björkman C. 2015. Optimizing Crops for Biocontrol of Pests and Disease. Trends Plant Scincie 20(11): 698-712. https://doi.org/10.1016/j.tplants.2015.08.007
Strobel GA, Kluck K., Hess WM, Sears J, Ezra D & Vargas PN. 2007. Muscodor albus E-6, an endophyte of Guazuma ulmifolia making volatile antibiotics: isolation, characterization and experimental establishment in the host plant. Microbiology 153(8): 2613-2620. https://doi.org/10.1099/mic.0.2007/008912-0
Tafoya F, Whalon ME, Vandervoot C, Coombs AB & Cibrian-Tovar J. 2007. Aggregation pheromone of Metamasius spinolae (Coleoptera: Curculionidae): chemical analysis and field test. Environmental Entomology 36(1): 53-57. https://doi.org/10.1603/0046-225x(2007)36[53:apomsc]2.0.co;2
Triana MF, França PHB, Queiroz AFO, Santos JM, Goulart HF & Santana AEG. 2020. The giant sugarcane borer (Telchin licus). Plos One 15(4): e0231689 [17]. https://doi.org/10.1371/journal.pone. 0231689
Tholl D, Boland W, Hansel A, Loreto F, Rose USR & Schnitze JP. 2006. Practical approaches to plant volatile analysis. The Plant Journal 45(4): 540–560. https://doi.org/10.1111/j.1365-313X.2005.02612.x
Vacas S, Melita O, Michaelakis A, Milonas P, Minuz R, Riolo P, . . . Navarro-LLopis V. 2017. Lures for red palm weevil trapping systems: aggregation pheromone and synthetic kairomone. Pest Management Science 73(1): 223-231. https://doi.org/10.1002/ps. 4289
Van Den Dool H & Kratz PD. 1963. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. Journal of Chromatography 11: 463-71. https://doi.org/10.1016/s0021-9673(01)80947-x
Venzon M, Janssen A, Pallini AE, Sabelis MW. 2000. A dieta de um predador de artrópodes polifágico afeta a busca de refúgio de suas presas tripes. Comportamento Animal 60: 369 – 375.
Vickers NJ, Christensen TA, Baker TC & Hildebrand JG. 2001. Odour-plume dynamics influence the brain's olfactory code. Nature 410(6827): 466-470. https:// doi.org/10.1038/35068559
Wattanapongsiri A. 1966. A revision of the genera Rhynchophorus and Dynamis (Coleoptera: Curculionidae). Corvallis, Oregon, USA: Oregon State University. Tesis Doctoral. Disponible en https://ir.library. oregonstate.edu/concern/file_sets/5h73q005b (accedido el 19-VI-2020)
Werner S, Polle A & Brinkmann N. 2016. Belowground communication: impacts of volatile organic compounds (VOCs) from soil fungi on other soil-inhabiting organisms. Apple Microbiologic Biotechnology 100(20): 8651-8665. https://doi.org/10.1007/s00253-016-7792-1
Wheatley RE. 2002. The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Van Leeuwenhoek 81(1-4): 357-364. https://doi.org/10.1023/a:1020592802234
Xu YJ, Luo F, Gao Q, Shang Y & Wang C. 2015. Metabolomics reveals insect metabolic responses associated with fungal infection. Analytical and Bioanalytical Chemistry 407 (16): 4815-4821. https://doi.org/ 10. 007/s00216-015-8648-8
Copyright (c) 2021 Anales de Biología
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Las obras que se publican en esta revista están sujetas a los siguientes términos:
1. El Servicio de Publicaciones de la Universidad de Murcia (la editorial) conserva los derechos patrimoniales (copyright) de las obras publicadas, y favorece y permite la reutilización de las mismas bajo la licencia de uso indicada en el punto 2.
2. Las obras se publican en la edición electrónica de la revista bajo una licencia Creative Commons Reconocimiento-NoComercial-SinObraDerivada 3.0 España (texto legal). Se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que: i) se cite la autoría y la fuente original de su publicación (revista, editorial y URL de la obra); ii) no se usen para fines comerciales; iii) se mencione la existencia y especificaciones de esta licencia de uso.
3. Condiciones de auto-archivo. Se permite y se anima a los autores a difundir electrónicamente las versiones pre-print (versión antes de ser evaluada) y/o post-print (versión evaluada y aceptada para su publicación) de sus obras antes de su publicación, ya que favorece su circulación y difusión más temprana y con ello un posible aumento en su citación y alcance entre la comunidad académica. Color RoMEO: verde.