Investigación del mecanismo de la actividad antifúngica del citral contra Cladosporium sphaerospermum Penz.

Autores/as

  • Camilla Pinheiro de Menezes
  • Ana Luiza Alves de Lima Perez
  • Janiere Pereira de Sousa
  • Julio Abrantes Pereira
  • Lílian de Souza Pinheiro
  • Maria Alice Araújo de Medeiros
  • Millena de Souza Alves Universidade Federal de Campina Grande
  • Abrahão Alves de Oliveira Filho
  • Edeltrudes de Oliveira Lima
DOI: https://doi.org/10.6018/analesbio.44.05
Palabras clave: Citral; Actividad antifúngica; Cladosporium; C. sphaerospermum.

Resumen

The aim of this study was to investigate the antifungal activity of citral against Cladosporium sphaerospermum, by determining the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC), effects on mycelial growth and conidia germination, and also investigated the possible action of citral in cell walls and cell membranes. The MIC of citral ranged from 128 to 256 µg / ml and the MFC ranged from 256 to 1024 µg/mL. The MIC50 and MFC50 were, respectively, 128 µg/mL and 256 µg/mL. Citral inhibited mycelial development and conidia germination and showed interaction with ergosterol. These data indicate that citral has strong antifungal activity, which may be related to its interaction with ergosterol.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Adan K, Sivropoulou A, Kokkni S, Lnaras T & Arsenakis M. 1998. Antifungal activities of Origanum vulgare subsp. Hirtum, Mentha spicata, Lavandula augustifolia and Salia fruticosa essential oils against humam pathogenic Fungi. Journal Agricultura Food Chemistry 46(5): 1739-1745. https://doi.org/10.1021/jf97 08296

Ahmed AN. 2015. Isolate and Diagnose the Fungus Cladosporium sphaerospermum as a Causal Agent of Date Palm Leaves Necrosis for the First Time in the Province of Basra, Iraq. Jordan Journal of Agricultural Sciences 3 (11): 859-868.

Armas JR, Aguero OP, Sanchez JMO & Peña LL. 2015. Evaluación de la toxicidad del aceite esencial de Aloysia triphylla Britton (cedrón) y de la actividad anti-Trypanosoma cruzi del citral, in vivo. Anales de Facultad de Medicina 76(2): 129-134. http://dx.doi.org/dx.doi.org/10.15381/anales.v76i2.11137

Bajpai VK, Sharma A & Baek KH. 2013. Antibacterial mode of action of Cudrania tricuspidata fruit essential oil, affecting membrane permeability and surface characteristics of food–borne pathogens. Food Control 32(2): 582-590. https://doi.org/10.1016/j.foodcont.2013.01.032

Bakkali F, Averbeck S, Averbeck D & Idaomar M. 2008. Biological effects of essential oils–a review. Food and Chemical Toxicology 46(2): 446-475. https://doi. org/10.1016/j.fct.2007.09.106

Belda-Galbis CM, Pina-Pérez MC, Leufvén A, Martínez A & Rodrigo D. 2013. Impact assessment of carvacrol and citral effect on Escherichia coli K12 and Listeria innocua growth. Food Control 33(2): 536-544. https://doi.org/10.1016/j.foodcont.2013.03.038

Calumby RJN, Silva JA, da Silva DP, de Farias Moreira RT, dos Santos Araujo MA, de Almeida LM, . . . & Alvino V. 2019. Isolamento e identificação da microbiota fúngica anemófila em Unidade de Terapia Intensiva. Brazilian Journal of Development 5(10), 19708-19722. https://doi.org/10.34117/bjdv5n10-186

Carmo ES, Lima EO, Souza EL & Sousa FB. 2008. Effect of Cinnamomum zeylanicum Blume essential oil on the growth and morphogenesis of some potentially pathogenic Aspergillus species. Brazilian Journal of Microbiology. 39: 91-97. https://doi.org/ 10.1590/s1517-838220080001000021

Chaouki W, Leger DY, Liagre B, Beneytout JL & Hmamouchi M. 2009. Citral inhibits cell proliferation and induces apoptosis and cell cycle arrest in MCF-7 cells. Fundamental Clinical Pharmacology 23(5): 549-556. https://doi.org/10.1111/j.1472-8206.2009.0 0738.x

Chotirmall SH, Mirkovic B, Lavelle GM & Mcelvaney NG. 2014. Immunoevasive Aspergillus virulence factors. Mycopathology 178(5-6): 363-370. https://doi.org/ 10.1007/s11046-014-9768-y

Cleeland R & Squires, E. 1991. Evalution of new antimicrobials in vitro and in experimental animal infections In: Lorian V. (Ed.) Antibiotics in Laboratory Medicine, pp. 739-786.

Clinical and Laboratory Standards Institute (CLSI). 2008. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi, Approved Standard-Second Edition. CLSI document M38-A2, Wayne: Clinical and Laboratory Standards Institute.

Cordeiro PAS, Siqueira GKR, da Silva WMT, & de Souza Vieira PD 2021. Fungos anemófilos associados ao ambiente das enfermarias em unidade hospitalar do Cabo de Santo Agostinho-PE, Brasil. SaBios-Revista de Saúde e Biologia 16, 1-8. https://doi.org/10.54372/sb.2021.v16.2821

Daferera DJ, Ziogas BN & Polission MG. 2003. The effetiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp. and Clavibacter michiganensis subsp. Michaganensis. Crop Protection 22(1): 39-44. https://doi.org/10.1016/S0261-219 4(02)00095-9

Denning DW, Hanson LH, Perlman AM & Stevens DA. 1992. Em estudos de sensibilidade e de sinergia in vitro de Aspergillus espécie para agentes convencionais e novos. Diagnostic Microbiology and Infectious Disease 15(1): 21-34.

Escalante A, Gattuso M, Pérez, P & Zacchino S. 2008. Evidence for the mechanism of action of the antifungal phytolaccoside B isolated from Phytolacca tetra­mera Hauman. Journal of Natural Products 71(10): 1720-1725. https://doi.org/10.1021/np070 660i

Fisher K & Phillips C. 2008. Potential antimicrobial uses of essential oils in food: Is citrus the answer? Trends in Food Science & Technology 19(3):156-164. https://doi.org/10.1016/j.tifs.2007.11.006

Frost DJ, Brandt KD, Cugier D & Goldman R. 1995. A whole-cell Candida albicans assay for the detection of inhibitors towards fungal cell wall synthesis and assembly. The Journal of Antibiotics 48(4): 306-310. https://doi.org/10.7164/antibiotics.48.306

Garcia R, Alves ESS, Santos MP, Aquije GM, Fernandes AAR, Santos RBD . . . & Fernandes P. 2008. Antimicrobial activity and potential use of monoterpenes as tropical fruits preservatives. Brazilian Journal Microbiology 39(1): 163-168. https://doi.org/10.1590/S1517-83822008000100032

Guerra FQS, Araújo RSA, Sousa JP, Pereira FO, Men­donça-Junior FJB, Barbosa-Filho JM & Lima EO. 2015. Evaluation of Antifungal Activity and Mode of Action of New Coumarin Derivative, 7-Hydroxy-6-nitro-2H-1-benzopyran-2-one, against Aspergillus spp. Evidence-Baseded Complementary Alternative Me­dicine 2015: 8. https://doi.org/10.1155/2015/925096

Gupta AK, Chaudhry M & Elewski B. 2003 Tinea corporis, tinea cruris, tinea nigra, and piedra. Dermatological Clinics 21(3): 395-400. https://doi. org/10.1016/S0733-8635(03)00031-7

Hadacek F & Greger H. 2000. Testing of antifungal natural products: methodologies, comparability of re­sults and assay choice. Phytochemical Analysis 11(3): 137-147. https://doi.org/10.1002/(SICI)1099-1565(200005/06)11:3%3C137::AID-PCA514%3E3. 0.CO;2-I

Hong JK, Yang HJ, Jung H, Yoon DJ, Sang MK & Jeun YC. 2015. Application of Volatile Antifungal Plant Essential Oils for Controlling Pepper Fruit Anthracnose by Colletotrichum gloeosporioides. The plant patho­logy journal 31(3): 269-277. https://dx.doi.org/10. 5423%2FPPJ.OA.03.2015.0027

Hua H, Xing F, Selvaraj J. N, Wang Y, Zhao Y, Zhou L . . . & Liu Y. 2014. Inhibitory effect of essential oils on Aspergillus ochraceus growth and ochratoxin a production. PloS One 9(9): 1-10. https://doi.org/10. 1371/journal.pone.0108285

Leite MCA, Bezerra APB, Sousa JP, Guerra FQS & Lima EO. 2014. Evaluation of antifungal activity and mechanism of action of citral against Candida albicans. Evidence-Based Complementary and Alternative Medicine 2014: 9. https://doi.org/10.1155/2014/ 378280

Li RY, Wu XM, Yin XH, Liang JN & Li M. 2014. The Natural Product Citral Can Cause Significant Damage to the Hyphal Cell Walls of Magnaporthe grisea. Molecules 19(7): 10279-10290. https://doi.org/10.3390/molecules190710279

Liu T, Zhang Q, Wang L, Yu L, Leng W, Yang J . . . & Jin Q. 2007. The use of global transcriptional analysis to reveal the biological and cellular events involved in distinct development phases of Trichophyton rubrum conidial germination. BMC genomics 8(1): 1-14.

Lupetti A, Danesi R, Campa M, Del Tacca M & Kelly S. 2002. Molecular basis of resistance to azole antifungals. Trends in Molecular Medicine 8(2): 76-81.

https://doi.org/10.1016/S1471-4914(02)02280-3

Maduri A, Patnayak R, Verma A, Mudgeti N, Kalawat U & Asha T. 2015. Subcutaneous infections by Cladosporium sphaerospermum–A rare case report. Indian Journal Pathology Microbiology 58(3): 406-407.

Mangprayool T, Kupittayanant S & Chudapongse N. 2013. Participation of citral in the bronchodilatory effect of ginger oil and possible mechanism of action. Phytotherapy 89: 68-73. https://doi.org/10.1016/j. fitote.2013.05.012

Menezes CP, Guerra FQS, Pinheiro LS, Trajano VN, Pereira FO & Lima EO. 2015. Investigation of Melissa officinalis L. essential oil for antifungal activity against Cladosporium carrionii. International Journal of Tropical Diseases & Health 8(2): 49-56. http://dx.doi.org/10.9734/IJTDH/2015/17841

Miron D, Battisti F, Silva FK, Lana AD, Pippi B, Casanova B . . . & Shapoval EE. 2014. Antifungal activity and mechanism of action of monoterpenes against dermatophytes and yeasts. Brazilian Journal of Pharmacognosy 24: 660-667. https://doi.org/10.1016/j.bjp.2014.10.014

Negri M, Salci TP, Mesquita-Shinobu CS, Capoci IRG, Svidzinski TIE & Kioshima ES. 2014. Early State Research on Antifungal Natural Products. Molecules 19(3): 2925-2956. https://doi.org/10.3390/mo lecules19032925

Ng KP, Yew SM, Chan CL, Soo-Hoo TS, Na SL, Hassan H … & Yee WY. 2012. Sequencing of Cladosporium sphaerospermum, a Dematiaceous fungus isolated from blood culture. Eukaryotic Cell 11(5): 705-706.

https://doi.org/10.1128/EC.00081-12

Odds FC, Brown AJP & Gow NAR. 2003. Antifungal agents: mechanisms of action. Trends in Microbiology 11(6): 272-279. https://doi.org/10.1016/S0966-842X(03)00117-3

Oliveira HBM, Selis NDN, Sampaio BA, Júnior MNS, de Carvalho SP, de Almeida JB, ... & Marques, LM 2021. Citral modulates virulence factors in methicillin-resistant Staphylococcus aureus. Scientific reports 11(1): 1-11. https://doi.org/10.1038/s41598-02 1-95971-y

Osherov N & May GS. 2001. The molecular mechanisms of conidial germination. Fems Microbiology Letters 199(2): 153-160. https://doi.org/10.1111/j.1574-6968.2001.tb10667.x

Ouyang Q, Tao N & Jing G. 2016. Transcriptional profiling analysis of Penicillium digitatum, the causal agent of citrus green mold, unravels an inhibited ergosterol biosynthesis pathway in response to citral. BMC Genomics 17(1): 1-16. https://doi.org/10.1186/s12864-016-2943-4

Park MJ, Gwak KS, Yang I, Kim KW, Jeung EB, Chang JW & Choi IG. 2009. Effect of citral, eugenol, nerolidol and α-terpineol on the ultrastructural changes of Trichophyton mentagrophytes. Phytotherapy 80(5): 290-296. https://doi. org/10.1016/j.fitote.2009.03.007

Parveen M, Hasan MK, Takahashi J, Murata Y, Kitagawa E, Kodama O & Iwahashi H. 2004. Response of Saccharomyces cerevisiae to a monoterpene: evaluation of antifungal potential by DNA microarray analysis. Journal Antimicrobial Chemotherapy 54(1): 46-55. https://doi.org/10.1093/jac/dkh245

Pereira FO, Mendes JM & Lima EO. 2013. Investigation on mechanism of antifungal activity of eugenol against Trichophyton rubrum. Medical Mycology 51(5): 507-513. https://doi.org/10.3109/13693786. 2012.742966

Pereira FO, Wanderley PA, Viana FAC, Lima RB, Sousa FB, Santos SG & Lima EO. 2011. Effects of Cymbopogon winterianus Jowitt ex Bor essential oil on the growth and morphogenesis of Trichophyton mentagrophytes. Brazilian Journal of Pharmaceutical Sciences 47(1): 145-153.

Pinto E, Pina-Vaz C, Salgueiro L, Goncalves MJ, Costa-de-Oliveira S, Cavaleiro C . . . & Martinez-de-Oliveira, J. 2006. Antifungal activity of the essential oil of Thymus pulegioides on Candida, Aspergillus and dermatophyte species. Journal of Medical Microbiology 55(10): 1367-1373. https://doi.org/10.1099/jm m.0.46443-0

Ponce H, Fernández E, Ortiz M, Ramírez M, Cruz D, Pérez N & Cariño R. 2010. Spasmolytic and anti-inflammatory effects of Aloysia triphylla and citral, in vitro and in vivo studies. Journal of Smooth Muscle Research 46(6): 309-19. https://doi.org/10.1540/jsmr.46.309

Rajput SB & Karuppayil SM. 2013. Small molecules inhibit growth, viability and ergosterol biosynthesis in Candida albicans. SpringerPlus 2(1): 1-6.

Rana BK, Singh UP & Taneja V. 1997. Antifungal activity and kinetics of inhibition by essential oil isolated from leaves of Aegle marmelos. Journal of Ethno­pharmacology 57(1): 29-34. https://doi.org/10.1016/S0378-8741(97)00044-5

Rao A, Zhang YQ, Muend S & Rao R. 2010. Mechanism of antifungal activity of terpenoid phenols resembles calcium stress and inhibition of the TOR pathway. Antimicrobial Agents and Chemotherapy 54(12): 5062-5069. https://doi.org/10.1128/AAC.01050-10

Rasooli I & Abyaneh MR. 2004. Inhibitory effects of Thyme oils on growth and aflatoxin production by Aspergillus parasiticus. Food Control 15(6): 479-483. https://doi.org/10.1016/j.foodcont.2003.07.002

Revankar SG & Sutton DA. 2010. Melanized fungi in human disease. Clinical Microbiology Reviews 23(4): 884-928. https://doi.org/10.1128/CMR.00069-12

Saddiq AA & Khayyat SA. 2010. Chemical and antimicrobial studies of monoterpene: Citral. Pesticide Biochemistry and Physiology 98(1): 89-93. https://doi.org/10.1016/j.pestbp.2010.05.004

Sahin F, Güllüce M, Daferera D, Sökmen A, Sökmen M, Polissiou M, . . . & Özer H. 2004. Biological activities of the essential oils andmethanol extract of Origanum vulgare ssp. vulgare in the Eastern Anatolia region of Turkey. Food Control 15(7): 549-557. https://doi.org/10.1016/j.foodcont.2003.08.009

Sanglard D & Odds FC. 2002. Resistence of Candida species to antifungal agents: molecular mechanisms and clinical consequences. The Lancet Infectious Diseases 2(2): 73-85. https://doi.org/10.1016/S1473-3099(02)00181-0

Saraiva Filho DE, Neves AM, de Moraes SM, de Souza EB, Rodrigues THS, dos Santos HS, ... & dos Santos Fontenelle RO. 2021. Composição química e atividade antifúngica do óleo essencial de Zanthoxylum petiolare A. St.-Hil. & Tul (RUTACEAE). Brazilian Journal of Development 7(4): 38904-38916. https://doi.org/10.34117/bjdv7n4-379

Sartoratto A, Machado ALM, Delarmelina C, Figueira GM, Duarte MCT & Rehder VLG. 2004. Composition and antimicrobial activity of essential oils from aromatic plants used in Brazil. Brazilian Journal Microbiology 35: 275-280. https://doi.org/10.1590/S1517-83822004000300001

Segers FJJ, Meijer M, Houbraken J, Samson RA, Wösten HAB & Dijksterhuis J. 2015. Xerotole­rant Xerotolerant Cladosporium sphaerospermum Are Predominant on Indoor Surfaces Compared to Other Cladosporium Species. PLoS ONE 10(12): e0145415. https://doi.org/10.1371/journal.pone.014 5415

Shao X, Cheng S, Wang H, Yu D & Mungai C. 2013. The possible mechanism of antifungal action of tea tree oil on Botrytis cinerea. Journal Applied Micro­biology 114(6): 1642-1649. https://doi.org/10.1111/ jam.12193

Shi C, Song K, Zhang X, Sun Y, Sui Y, Chen Y . . . & Xia X. 2016. Antimicrobial Activity and Possible Mechanism of Action of Citral against Cronobacter sakazakii. PLoS One 11(7): 1-12. https://doi.org/10.1371/ journal.pone.0159006

Siddiqui ZN, Farooq F, Musthafa TNM, Ahmad A & Khan AU. 2013. Synthesis, characterization and antimicrobial evaluation of novel halopyrazole derivatives. Journal Saudi Chemical Society 17(2): 237-243. https://doi.org/10.1016/j.jscs.2011.03.016

Sikkema J, De Bont JA & Poolman B. 1995. Mechanisms of membrane toxicity of hydrocarbons. Microbiological Reviews 59(2): 201-222. https://doi.org/10. 1128/MR.59.2.201-222.1995

Soumagne T, Pana-Katatali H, Degano B & Dalphin JC. 2015. Combined pulmonary fibrosis and emphysema in hypersensitivity pneumonitis. BMJ Case Reports 2015: bcr2015211560. http://dx.doi.org/10.11 36/bcr-2015-211560

Sousa JP, Costa AOC, Leite MCA, Guerra FQS, Silva VA, Menezes CP . . . & Lima EO. 2016. Antifungal Activity of Citral by Disruption of Ergosterol Biosynthesis in Fluconazole Resistant Candida tropicalis. International Journal of Tropical Disease & Health 11(4): 1-11. http://dx.doi.org/10.9734/IJTDH/2016/21 423

Svetaz L, Agüero MB, Alvarez S, Luna L, Feresin G, Derita M . . . & Zacchino S. 2007. Antifungal activity of Zuccagnia punctata Cav.: evidence for the mechanism of action. Planta Médica 73(10): 1074-1080. https://doi.org/10.1055/s-2007-981561

Tao N, Ouyang Q & Jia L. 2014. Citral inhibits mycelial growth of Penicillium italicum by a membrane damage mechanism. Food Control 41: 116-121. https://doi.org/10.1016/j.foodcont.2014.01.010

Tasic S & Miladinović-Tasić N. 2007. Cladosporium spp. Cause of opportunistic Mycoses. Acta Facultatis Medicae Naissensis 24(1): 15-19.

Thyágara N & Hosono A. 1996. Effect of spice extract on fungal inhibition. Lebenson Wiss Technol 29(3): 286-288. https://doi.org/10.1006/fstl.1996.0042

Trabulsi LR & Alterthum F. 2004. Microbiology. 4.ed. São Paulo: Atheneu.

Ultee A, Bennik MHJ & Moezelaar R. 2002. The phenolic hydroxyl group of carvacrol is essential for action against the food–borne pathogen Bacillus cereus. Applied and Environmental Microbiology 68(4):1561–1568. https://doi.org/10.1128/AEM.68.4. 1561-1568.2002

Wei L, Chen C, Chen J, Lin L, & Wan C. 2021. Possible fungicidal effect of citral on kiwifruit pathogens and their mechanisms of actions. Physiological and Molecular Plant Pathology 114: 101631. https://doi.org/10.1016/j.pmpp.2021.101631

Xia H, Liang W, Song Q, Chen X, Chen X & Hong J. 2013. The in vitro study of apoptosis in NB4 cell induced by citral. Cytotechnol 65(1): 49-57. https:// doi.org/10.1007/s10616-012-9453-2

Yano S, Koyabashi K & Kato K. 2003. Intrabronchial lesion due to Cladosporium sphaerospermum in a healthy, non-asthmatic woman. Mycoses 46(8): 348 -350. https://doi.org/10.1046/j.1439-0507.2003.008 85.x

Yew SM, Chan CL, Ngeow YF, Toh YF, Na SL, Lee KW . . . & Kuan CS. 2016. Insight into different environmental niches adaptation and allergenicity from the Cladosporium sphaerospermum genome, a common human allergy-eliciting Dothideomy­cetes. Scientific Reports 6(1): 1-13. https://doi.org/10.1038/srep27008

Zalar P, De Hoog G, Schroers H, Crous P, Groenewald J & Gunde-Cimerman, N. 2007. Phylogeny and ecology of the ubiquitous saprobe Cladosporium sphaerospermum, with descriptions of seven new species from hypersaline environments. Studies in Mycology 58: 157-183. https://doi.org/10.3114/sim. 2007.58.06

Zheng SJ, Jing GX, Wang X, Ouyang QL, Jia L & Tao NG. 2015. Citral exerts its antifungal activity against Penicillium digitatum by affecting the mitochondrial morphology and function. Food Chemistry 178: 76-81. https://doi.org/10.1016/j.foodchem.2015.01.077

Zhou HE, Tao NG & Jia L. 2014. Antifungal activity of citral, octanal and α–terpineol against Geotrichum citri-aurantii. Food Control 37: 277-283. https:// doi.org/10.1016/j.foodcont.2013.09.057

Zoppas BCA, Valencia-Barrera RM & Fernández-Gonzáles D. 2011. Distribuição de esporos de Cladosporium spp no ar atmosférico de Caxias do Sul, RS, Brasil, durante dois anos de estudo. Brazilian Journal of Allergy and Immunopathology 34(2): 55-58.

Zurita J & Hay RJ. 1987. Adherence of dermatophyte microconidia and arthroconidia to human keratinocytes in vitro. Journal of Investigative Dermatology 89(5): 529-534. https://doi.org/10.1111/1523-1747.ep12461067

Publicado
04-07-2022
Cómo citar
Pinheiro de Menezes, C. ., Alves de Lima Perez, A. L. ., Pereira de Sousa, J., Abrantes Pereira, J., de Souza Pinheiro, L., Araújo de Medeiros, M. A., … de Oliveira Lima, E. (2022). Investigación del mecanismo de la actividad antifúngica del citral contra Cladosporium sphaerospermum Penz. Anales de Biología, (44), 43–53. https://doi.org/10.6018/analesbio.44.05
Número
Sección
Artículos