Efectos del material particulado en los parámetros de comportamiento, hematológicos y bioquímicos en las ratas Wistar

Autores/as

  • Samanta Cristina-Siebel-de-Moraes Department of Biochemistry, Post-Graduation Program in Environmental Quality, Feevale University, Brazil.
  • Victória Branca Moron Department of Biochemistry, Post-Graduation Program in Environmental Quality, Feevale University, Brazil.
  • Aline Belem-Machado Department of Biochemistry, Post-Graduation Program in Environmental Quality, Feevale University, Brazil.
  • Paula Schmitt Department of Biochemistry, Post-Graduation Program in Environmental Quality, Feevale University, Brazil.
  • Daniela Montanari-Migliavacca-Osorio Department of Chemistry, Post-Graduation Program in Environmental Quality, Feevale University, Brazil.
  • Daiane Bolzan-Berlese Department of Biochemistry, Post-Graduation Program in Environmental Quality, Feevale University, Brazil.
DOI: https://doi.org/10.6018/analesbio.42.11
Palabras clave: Hematología, Contaminación del aire, Pruebas de comportamiento, Bioquímica

Resumen

El Material Particulado (MP) puede alterar los procesos cognitivos, el comportamiento depresivo y hematológico en el modelo animal. El objetivo fue evaluar los efectos causados por MP en los parámetros conductuales, hematológicos y bioquímicos en un modelo animal. Se observaron alteraciones en la actividad locomotora de las ratas, donde hubo una disminución significativa en la locomoción del Grupo 3 (MP10) en comparación con los Grupo 1 (Control) y Grupo 2 (MP2,5). Con respecto al comportamiento de ansiedad, el Grupo 3 pasó significativamente más tiempo en brazos abiertos en comparación con el control y MP2,5. No se observaron cambios hematológicos y bioquímicos. En este estudio, se concluye que, la exposición a la MP puede causar daño neurológico y, en consecuencia, afectar a otros sistemas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Adachi K & Tainosho Y. 2004. Characterization of heavy metal particles embedded in tire dust. Environment International 30: 1009-1017. doi: https://doi.org/10. 1016/j.envint.2004.04.004.

Alleman LY, Lamaison L, Pedrix E, Robache A & Galloo JC. 2010. PM10 metal concentrations and source identification using positive matrix factorization and wind sectoring in a French industrial zone. Atmospheric Research 96(4): 612-625. doi: https://doi. org/10.1016/j.atmosres. 2010.02.008.

Alves DD, Osório DMM, Rodrigues MAS, Illi JC, Bianchin, L & Benvenuti T. 2015. Concentrations of PM2.5-10 and PM2.5 and metallic elements around the Schmidt Stream area, in the Sinos River Basin, southern Brazil. Brazilian Journal of Biology 75(4): 43-52. doi: http://dx.doi.org/10.1590/1519-6984. 00113suppl.

Behbehani MM. 1995. Functional characteristics of the midbrain periaqueductal gray. Progress in Neurobiology 46 (6): 575-605. doi: https://doi.org/10.1016/ 0301-0082(95) 00009-K.

Benarroch EE. 2012. Periaqueductal gray: an interface for behavioral control. Neurology 78: 210-217. doi: https://doi. org/10.1212/WNL.0b013e31823fcdee.

Binoki D. 2010. Alterações cardiopulmonares induzidas em ratos saudáveis após a instilação nasal subcrônica de suspensão aquosa de material particulado fino em concentração ambiental. São Paulo, Brasil: Universidade de São Paulo. Doctoral Thesis.

Block ML & Calderón-Garcidueñas L. 2009. Air pollution: mechanisms of neuroinflammation and cns disease. Trends in Neuroscience 32 (9): 506-516. doi: https://doi. org/10.1016/j.tins.2009.05.009.

Braga A, Pereira LAA, Böhm GM & Saldiva PHN. 2001. Poluição atmosférica e seus efeitos na saúde humana. Revista USP 51: 58-71.

Brito JM. 2014. Avaliação da exposição aguda às partículas urbanas concentradas e da exaustão de motores diesel e biodiesel sobre o perfil inflamatório pulmonar e sistêmico de camundongos. São Paulo,140 p. Programa de patologia da faculdade de medicina da Universidade de São Paulo. Doctoral Thesis.

Carobrez AP & Bertoglio LJ. 2005. Ethological and temporal analyses of anxiety-like behavior: The elevated plus-maze model 20 years on. Neuroscience and Biobehavioral Reviews 29: 1193-1205. doi: https://doi.org/10.1016/j.neubiorev.2005.04.017.

Carrive P. 1993. The periaqueductal gray and defensive behavior: functional representation and neuronal organization. Behavioural Brain Research 58: 27-47. doi: https://doi.org/10.1016/0166-4328(93)90088-8.

Carrive P & Morgan MM. 2012. Periaqueductal gray. The Human Nervous System. 3ª ed. San Diego: Academic Express.

Chithra VS & Nagendra SM. 2013. Chemical and morphological characteristics of indoor and outdoor particulate matter in an urban environmental. Atmospheric Environment 77: 579-587. doi: https://doi. org/10.1016/j.atmosenv. 2013.05.044.

Costa LG, Cole TB, Coburn J, Chang YC, Dao K & Roqué PJ. 2017. Neurotoxicity of traffic-related air pollution. Neurotoxicology 59: 133-139. doi: https:// doi.org/10. 1016/j.neuro.2015.11.008.

Depaulis A & Bandler R. 1991. The midbrain periaqueductal gray matter: functional, anatomical, and neurochemical organization. New York: Springer Science + Business Media.

Donaldson K, Stone V, Clouter A & Macnee W. 2001. Ultrafine particles. Occupational Environmental Medicine 58 (3): 211-216. doi: http://dx.doi.org/10. 1136/oem.58.3.211.

Dubowsky SD. 2006. Diabetes, obesity and hypertension may enhance associations between air pollution and markers of systemic inflammation. Environ­mental Health Perspectives 114(7): 992-998. doi: https://doi.org/10. 1289/ehp.8469.

Espinoda AJF, Rodríguez MT, De La Rosa FJB & Sánchez JCJ. 2001. Size distribution of metals in urban aerosols in Seviller (Spain). Atmospheric Environment 35(14): 2595-2601. doi: https://doi.org/10. 1016/S1352-2310(00)00403-9.

Fernandes JS, Carvalho AM, Campos JF, Costa LO & Filho GB. 2010. Poluição atmosférica e efeitos respiratórios, cardiovasculares e reprodutivos na saúde humana. Revista Médica de Minas Gerais 20(1): 92-101.

Guerra FP & Miranda RM. 2011. Influência da meteorologia na concentração do poluente atmosférico PM2,5 na RMRJ e na RMSP. Instituto Brasileiro de Estudos Ambientais: II Congresso Brasileiro de Gestão Ambiental. Available in https://www.ibeas.org.br/congresso/Trabalhos2011/IV-007.pdf (accessed on 1-VIII-2019).

Hogg S. 1996. A review of the validity and variability of the elevated plus-maze as an animal model of anxiety. Pharmacology Biochemistry and Behavior 54: 21-30. doi: https://doi.org/10.1016/0091-3057(95) 02126-4.

Holstege G. 2014. The periaqueductal gray controls brainstem emotional motor systems including respiration. Progress Brain Research 209: 379-405. doi: https://doi.org/10. 1016/B978-0-444-63274-6.00020-5.

Hieu N & Lee BK. 2010. Characteristics of particulate matter and metals in the ambient air from a residential area in the largest industrial city in Korea. Atmospheric Research 98(2-4): 526-537. doi: https://doi. org/10.1016/j.atmosres. 2010.08.019.

Kabata-Pendias A & Mukherjee AB. 2007. Trace elements from soil to human. Springer Science & Business Media.

Keay K & Bandler R. 2004. Periaqueductal gray. The Rat Nervous System. 3ª ed. San Diego: Elsevier Academic Press.

Lim JM, Lee JH, Moon JH, Chung YS & Kim KH. 2010. Airborne PM10 and metals from multifarious sources in an industrial complex area. Atmospheric Research 96: 53-64. doi: https://doi.org/10.1016/j.atmosres. 2009.11.013.

Linnman C, Moulton EA, Barmettler G, Becerra L & Borssok D. 2012. Neuroimaging of the periaqueductal gray: state of the field. Neuroimage 60(1): 505-522. doi: https://doi.org/10.1016/j.neuroimage. 2011. 11.095.

Loyola AG, Quitero SL, Escaleira V & Minho AS. 2012. Trace metals in the urban aerosols of Rio de Janeiro city. Journal of the Brazilian Chemical Society 23(4): 628-638. doi: https://doi.org/10.1590/S0103-50532012000400007.

Luo B, Liu J, Fei G, Han T, Zhang K, Wang L, … Niu J. 2017. Impact of probable interaction of low temperature and ambient fine particulate matter on the function of rats alveolar macrophages. Environmental Toxicology and Pharmacology 49:172-178. doi: https://doi.org/10.1016/j. etap.2016.12.011.

Manahan SE. 2013. Química ambiental. 9ª ed., São Paulo: bookman.

Mazzoli-Rocha F, Carvalho, GM, Lanzetti M, Valença SS, Silva LF, Saldiva PH, ... Faffe DS. 2014. Respiratory toxicity of repeated exposure to particles produced by traffic and sugar cane burning. Respiratory Physiology Neurobiology 191: 106-113. doi: https:// doi. org/10.1016/j.resp. 2013. 11.004.

Mello PAS, Zamboni W, Mariani RL & Sella SM. 2010. Caracterização do material particulado fino e grosso e composição da fração inorgânica solúvel em água em São José dos Campos (SP). Química Nova 33 (6): 1247-1253. doi: https://doi.org/10.1590/S0100-40422010000600005.

Migliavacca DM, Teixeira EC, Gervasoni F, Conceição RV & Rodriguez MTR. 2012. Metallic elements and isotope of Pb in wet precipitation in urban area, South America. Atmospheric Research 107: 106-114. doi: https://doi.org/10. 1016/j.atmosres.2012. 01.001.

Nahas TR. 1999. O teste do campo aberto. In: Xavier G.T. (editor), Técnicas para o estudo do sistema nervoso. São Paulo: Editora Plêiade.

Nicodemos RM, Jesus AR, Fontoura RS & Barrozo MAS. 2009. Estudo da relação entre variáveis meteorológicas e concentração de MP10 no centro da cidade de Uberlância (MG). Anais de Congresso brasileiro de Engenharia Química. Available in https:// ssl4799.websiteseguro.com/swge5/seg/cd2008/PDF/IC2008-0021.PDF (accessed on 1-VIII-2019).

Rojas-Carvajal M, Fornaguera J, Mora-Gallegos A & Brenes JC. 2018. Testing experience and environmental enrichment potentiated open-field habituation and grooming behavior in rats. Animal Behaviour 137: 225-235. doi: https://doi.org/10.1016/j.anbehav.2018.01.018.

Seinfeld JH & Pandis SN. 2006. Atmospheric chemistry and physics: from air pollution to climate change. New York: John Wiley & Sons.

Thorpe A & Harrison RM. 2008. Sources and properties of non-exhaust particulate matter from road traffic: A review. Science of the Total Environment 400: 270-282. doi: https://doi.org/10.1016/j.scitotenv.2008.06. 007.

Unsal AIA, Basal Y, Birincioglu S, Koracturk T, Cakmak H, Unsal A, ... Demirci B. 2018. Ophtalmic adverse effects of nasal decongestants on an experimental rat model. Arquivos Brasileiros de Oftalmologia 81(1); 53-58. doi: http://dx.doi.org/10.5935/0004-2749.20180012.

Xu HM, Cao JJ, Ho KF, Ding H, Han YM, Wang GH, Chow JC, ... Li WT. 2012. Lead concentrations in fine particulate matter after the phasing out of leaded gasoline in Xi’an, China. Atmospheric Environment 46(23): 217-224. doi: https://doi.org/10.1016/j.atmosenv.2011.09.078.

Yan Y-H, Chou CC-K, Wang J-S, Tung C-L, Li Y-R, Lo K, Cheng T-J. 2014. Subchronic effects of inhaled ambient particulate matter on glucose homeostasis and target organs damage in a type 1 diabetic rat model. Toxicology and Applied Pharmacology 281:211-220. doi: https://doi.org/10.1016/j.taap.2014.10.005.

Yi L, Wei C & Fan W. 2017. Fine-particulate matter (PM2.5), a risk factor for rat gestational diabetes with altered blood glucose and pancreatic GLUT2 expression. Gynecological Endocrinology 33(8): 611-616. doi: https://doi.org/10.1080/09513590. 2017.1318368.

Wang Y, Xiong L & Tang M. 2017. Toxicity of inhaled particulate matter in the central nervous system: neuroinflammation, neuropsychological effects and neurodegenerative disease. Journal of Applied Toxicology 37:644-667. doi: https://doi.org/10.1002/jat. 3451.

Publicado
29-06-2020 — Actualizado el 12-03-2021
Cómo citar
Cristina-Siebel-de-Moraes, S., Moron, V. B., Belem-Machado, A., Schmitt, P., Montanari-Migliavacca-Osorio, D., & Bolzan-Berlese, D. (2021). Efectos del material particulado en los parámetros de comportamiento, hematológicos y bioquímicos en las ratas Wistar. Anales de Biología, (42), 95–104. https://doi.org/10.6018/analesbio.42.11
Número
Sección
Artículos