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ABSTRACT 

In the process of weightlifting, there is an increased load on both the respiratory system, the 

cardiovascular system, and on individual parts of the nervous system. At the same time, special 

attention is paid to the possibilities of providing a stable body functioning after the cancellation of 

treatment course and the corresponding pharmacological support of athletes with treatment schedule 

or without it. The novelty of the study is determined by the need to ensure constant and stable work 

of the cardiovascular system. The authors note that this is possible both when the body performance 

indicators return to the level before injury, and in conditions of returning to original sports results. It 

is determined in the paper that the use of the instrumental model will make it possible to develop 

sustainable energy consumption and coordinate the balancing of loads on an athlete during the period 

of recovery after injury. Model formation is based on uniform signals in a correlated random process 

in a simulation model. The practical significance of the study is determined by the need to structure 

the training loads in the post-traumatic period. This reduces a number of physiological and 

psychological stresses on a person and allows increasing in the long term the loads that the athlete 

plans to utilise after returning to the sports sector. 
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1. INTRODUCTION 

According to the World Health Organisation (2020), coronary heart disease, which can occur 

after retirement from sports or during recovery from injury, is significantly more common than death 

from other sports-related injures (Wasik et al., 2015). Therefore, an important task of modern 

medicine is the diagnosis of coronary heart disease at the early stages of its onset and development 

(Sujadevi et al., 2017; Baimbetov et al., 2022). Devices for detecting coronary heart disease, common 

in medicine, use algorithms for processing an electrocardiosignal based on an analysis of its temporal 

structure (Gopika et al., 2019; Ahmad & Iqbal, 2022). In particular, the processing of the 

electrocardiosignal is performed on the ЅT-segment, since coronary heart disease is most strongly 

manifested in this segment, namely, in the form of a sharp increase or decrease in the amplitude, the 

occurrence of a break, or additional peaks (Yan et al., 2011; Nurtas et al., 2020). The process of 

disease manifestation, in which the structure of the cardiocomplex of the electrocardiosignal is 

examined and modelled, and the process of ischemic heart disease onset is shown. It consists in 

changing the angle of inclination of the ST-segment relative to the isoline, the possibility of changing 

the amplitude of this segment or the appearance of an additional break or peak at point "I" is 

determined by most specialists as primary (Kahankova et al., 2018). In the case of the use of 

described method of electrocardiosignal processing, information concentrated in other points of the 

segment is practically ignored (Cherif & Debbal, 2016). 

The decision on the presence or absence of an ischemic episode is made based on observing 

the signal of the ЅT-segment of the current cardio complex or the signal averaged over a short time 

interval (Varshney & Singh, 2020). However, an ischemic episode develops within several seconds 

(Lehner & Rangayyan, 1987). Therefore, a significant part of the information not only about the 

presence of an ischemic episode but also about its course (if any) is practically lost during processing 

(Abadi & Sumarna, 2019). It is important to develop new, more effective processing methods for 

detecting coronary heart disease (El-Badlaoui & Hammouch, 2017). Common methods of 

electrocardiosignal processing to highlight informative characteristics that are indicators of coronary 

heart disease are associated with the study of the temporal structure and characteristics of the 

amplitude spectra of the electrocardiosignal (harmonic analysis methods) (Kouras et al., 2009). In the 

case of a probabilistic approach to modelling an electrocardiosignal, a stationary model is known, 

which determines the methods of spectral correlation analysis (Zhao et al., 2017). In this case, 

informative signs of a signal are its probabilistic characteristics and distributions (probabilities of 

values of a random variable, spectral power density, etc.) (Debbal & Bereksi-Reguig, 2008). 
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However, the stationary model does not have any means of describing oscillations in time, which are 

electrocardiosignals; therefore, the methods of spectral-correlation analysis do not make it possible to 

assess the phase-time characteristics of the signal in order to identify the moment of manifestation of 

changes in the structure of the electrocardiosignal, since such signal will be stationary only in the 

state of a medical norm and at short time intervals, because by its nature the electrocardiosignal is a 

nonstationarity type signal (Balasubramaniam & Nedumaran, 2010; Kluszczynski & Czernicki, 

2012). 

Often the possibility of diagnosing heart diseases is considered based on the findings from 

phonocardiographic signal processing, but for the purpose of identifying manifestations of coronary 

heart disease, this method provides limited opportunities, since the phonocardiographic signal itself 

reflects the work of the heart from the side of biomechanics, and information about the processes of 

excitation and relaxation of its individual departments in it are poorly expressed (Cherif et al., 2010; 

Baimbetov et al., 2018b). A model of the electrocardiosignal in the form of a periodically correlated 

random process has been substantiated, which will be adequate in the task of identifying 

manifestations of coronary heart disease (Kumar & Jagannath, 2015). Such model is a natural model 

of signals that have a rhythmic structure, and have the means of raising nonstationarity signals into 

stationary ones, without rejecting non-stationarity, but taking it into account, with the subsequent 

application of the methods of spectral-correlation analysis of the theory of stationary processes (Kim, 

2015; Szczerba et al., 2021). The novelty of the study is determined by the need to ensure constant 

and stable work of the cardiovascular system. 

2. METHODS 

Based on empirical conclusions and actual medical facts, in particular, the fact that the 

problem of phonocardiographic signal transmission over the then existing analogue telephone lines 

with the appropriate parameters and bandwidth, the frequency response of which was "0.1 100 Hz", 

was successfully solved, using the "phonocardiographic signal bypass" obtained by passing the signal 

through analogue low-frequency filters, a simulation model of the phonocardiographic signal was 

developed in the form of an additive-multiplicative envelope of the mixture approximated by the 

sigmoid transition function and the vector of frequency content contracted from separate intervals 

previously shown in the frequency domain of white noise (Shino et al., 1996; Baimbetov et al., 

2018a). Its main advantages include simplicity, undemanding machine resources, and the ability to 

take into account the randomness characteristic of the phonocardiographic signal (Had et al., 2020; 
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Kluszczynski et al., 2022). Based on the above and on the mathematical model of the 

phonocardiographic signal in the form of a periodically correlated random process; the computer 

simulation model has the form (1)-(2): 
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where 𝜉𝑘  – k -th contraction; 𝑁𝑘 – number of phonocardiographic signal contractions; 𝑀𝑘 – the 

number of intervals of the phonocardiographic signal within 𝑘-th contraction. 

 𝐸(𝑠𝑛𝑘 , 𝐴𝑛𝑘 , 𝛹𝐴, 𝑇𝑛𝑘 , 𝜈𝑛𝑘 , 𝑡𝑛) =

{
 
 

 
 

𝐴𝑛𝑘

1+(
0,5𝑇𝑛𝑘
𝑡𝑛

)
𝜈𝑛𝑘10

+𝛹𝐴 , 𝑠𝑛𝑘 > 0

2𝐴𝑛𝑘

1−(
0,5𝑇𝑛𝑘
𝑡𝑛

)
𝜈𝑛𝑘10

+𝛹𝐴 , 𝑠𝑛𝑘 < 0
 (2) 

𝑠𝑛𝑘 – marker of growth/decline of the approximating function of 𝑛-th interval of 𝑘-th 

contraction; 𝐴𝑛𝑘 – amplitude of 𝑛 -th interval of 𝑘 -th contraction; 𝑇𝑛𝑘 – duration of 𝑛-th interval of 

𝑘 -th contraction; 𝜈𝑛𝑘  – growth / decline rate of 𝑛 -th interval of 𝑘 -th contraction; 𝑡𝑛 – certainty 

interval of 𝑛-th interval; 𝑤 – Blackman window; 𝑤𝑛 – white noise; 𝑜 – overlap ratio of 𝑛 -th interval 

with the dimension 𝑇𝑛𝑘 of 𝑘 -th contraction relative to 𝑛-1-th interval 𝑇𝑛−1𝑘  of 𝑘 -th contraction; 

ℎ(𝑓𝑛𝑘𝑙 + 𝛹𝑓𝑛𝑘𝑙 , 𝑓𝑛𝑘ℎ +𝛹𝑓𝑛𝑘ℎ) – the kernel of convolution of the band pass filter from the lower 𝑓𝑛𝑙  

and upper 𝑓𝑛ℎ  boundaries of the passband; 

𝛹𝐴𝑛𝑘(𝑀(𝐴𝑛𝑘), 𝐷(𝐴𝑛𝑘)), 𝑓𝑛𝑘𝑙(𝑀(𝑓𝑖𝑛𝑘𝑙), 𝐷(𝑓𝑖𝑛𝑘𝑙)), 𝑓𝑛𝑘ℎ(𝑀(𝑓𝑖𝑛𝑘ℎ), 𝐷(𝑓𝑖𝑛𝑘ℎ)) – random variables 

for amplitudes, low and high cut-off frequencies of the band-pass filter of 𝑛-th interval of 𝑘-th 

contraction with a Gaussian distribution law with mathematical expectation 𝑀{𝐴} = 𝑀(𝑓𝑖𝑛𝑘𝑙) =

𝑀(𝑓𝑖𝑛𝑘ℎ) = 0 sets of real numbers. According to this, a flowchart of the phonocardiographic signal 

simulation program was developed. 

Thus, the hypothesis of the study is that weightlifting creates an increased load on the 

respiratory system, cardiovascular system and certain parts of the nervous system. Therefore, it is 

important to ensure the stable functioning of the body after the course of treatment and appropriate 

pharmacological support for athletes with or without a treatment schedule. Ensuring the constant and 

stable functioning of the cardiovascular system is possible by returning the body's performance 

indicators to the level that it was before the injury, or even better. An effective solution is to use an 

instrumental model to develop rational energy consumption and coordinate the balancing of loads on 

the athlete during the recovery period after an injury. 
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3. RESULTS AND DISCUSSION 

The flowchart of the phonocardiographic signal simulation program (Figure 1) includes the 

following operations: at the stage of data initialisation, the program, after the start, makes settings for 

the environment and brings it to the default state, reads the values of the variables: 

 𝑇𝑛𝑘 – duration of 𝑛-th interval of 𝑘-th contraction; 

 𝐴𝑛𝑘 – amplitude of 𝑛-th interval of 𝑘-th contraction; 

 𝑠𝑛𝑘 – marker of growth/decline of the approximating function of 𝑛-th interval of 𝑘-th 

contraction; 𝐴𝑛𝑘 – amplitude of 𝑛 -th interval of 𝑘 -th contraction; 𝑇𝑛𝑘 – duration of 𝑛-th interval of 

𝑘-th contraction; 𝜈𝑛𝑘  – rate of growth/decline of 𝑛 -th interval of k -th contraction; 𝑡𝑛 – interval of 

certainty of 𝑛-th interval; 𝑜 – overlap ratio of 𝑛 -th interval 𝑇𝑛𝑘 𝑘-th contraction relative to 𝑛−1-th 

interval dimension 𝑇𝑛−1𝑘  of 𝑘-th contraction; 𝑓𝑛𝑙– lower limit of the bandwidth; 𝑓_𝑏_𝑟𝑎𝑡𝑖𝑜_1 – value 

of the first edge of the band pass filter; 𝑓_𝑏_𝑟𝑎𝑡𝑖𝑜_1 – value of the second edge of the band pass 

filter; adjusts input parameters and makes initial settings of software objects and functions. 

The next stage is the implementation of recursion by entering a global loop, the number of 

iterations of which depends on the number of heart contractions provided by the input data (variable 

𝑘). 

 

Figure 1. Sequence of operations for the implementation of the imitation model of the 

phonocardiographic signal 
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Then the recursion is occurred by entering a loop, the number of iterations of which depends 

on the number of 𝑛 intervals of 𝑘-th contraction. Further, the algorithm is divided into two branches, 

which, provided there are more than one processor core in the system, can be performed in parallel 

and/or some of the computational operations can be implemented using the resources of the video 

adapter. The calculation of the transition function occurs at the next stage of the first branch of the 

algorithm of 𝑛 -th interval of 𝑘 -th contraction. Concatenation of the transition functions into the 

envelope vector occurs at the next stage of the first branch of the algorithm of 𝑛 -th interval of 𝑘-th 

contraction. The synthesis of the bandpass filter (pole calculation) is the first stage of the second 

branch of the algorithm, which is responsible for the formation of the vector of frequency content. 

The generation of a fragment of bandpass white noise occurs at the next stage of the second branch of 

the algorithm of 𝑛-th interval of 𝑘-th contraction. Concatenation with overlapping fragments of 

bandpass white noise weighted with the Blackman window occurs at the next stage of the second 

branch of the algorithm of 𝑛-th interval of 𝑘-th contraction; Further, the ascent of both branches of 

the algorithm is reflected in one stream of calculating the resulting vector of the simulation model by 

forming a multiplicative mixture of the envelope and the frequency content vector. The algorithm 

performs each subsequent recursion of𝑘 -th contraction to calculate the simulation model. The next 

stage is to save the calculation results and display the results in a graphical form convenient for 

analysis by the user. 

The final step is to clean up the workspace, reset the environment to its default state, check 

the checksums, and exit the runtime. Software development is carried out in the Matlab environment, 

which combines many high-level abstraction tools and allows simplifying this stage, and thereby 

reduce the cost of the final product. A subroutine for extracting the envelope of a real 

phonocardiographic signal. The flowchart of the program is shown in the Figure 2. 
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Figure 2. The flowchart for extracting the envelope of an actual signal 

 

The flowchart of the subroutine for extracting the envelope of an actual signal includes the 

following operations: at the stage of data initialisation, the program, after starting, makes settings for 

the environment and reads the values of the variables to the default state; the next step is the 

calculation of the Hilbert transform and, accordingly, the selection of the orthogonal conjugation; 

then the bypass phonocardiogram is calculated by the expression (3): 

 𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒 = √𝑥𝑟
2 + 𝑥𝑖

2 (3) 

To speed up the algorithm, it was decided to synthesise a Hilbert phase splitter with the 

following characteristic: the next stage is to save the calculation results and output of the results, 

clean up the workspace, bring the environment to the default state, check checksums and exit the 

program code execution environment. The impulse response of the Hilbert phase inverter is 

calculated by the expression (4): 

    j jH e h n e 






  (4) 

As a result of the filtering procedure of the Hilberat phase splitter, two sequences were 

obtained – the real and imaginary parts of the complex vector (5): 
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And the alternative phonocardiographic signal is calculated by the expression, which is the 

final (6): 

 𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒 = √𝑥𝑟
2 + 𝑥𝑖

2 (6) 

Flowchart of the subroutine for generating the conjugation function for approximation of the 

phonocardiographic signal bypass: at the stage of data initialisation, the program, after starting, 

makes settings for the environment and reads the values of the variables to the default state; the next 

step is a block of conditions that depend on 𝑠𝑛𝑘 (the marker of growth/decline of the sigmoid 

function is “true” at 𝑠𝑛𝑘 > 0 and “insignificant” at 𝑠𝑛𝑘 < 0; then the generation of the conjugation 

function for the approximation is calculated by the formula (7): 

 𝑔 = 𝑎./(1+ (0,5 ∗ 𝑇./(𝑡𝑛 + 𝑒𝑝𝑠)).
∧ (𝑣 ∗ 10)) (7) 

when 0nks   

or (8): 

 𝑔 = 𝑎 + 𝑎./−(1 + (0,5 ∗ 𝑇./(𝑡_𝑛 + 𝑒𝑝𝑠)).∧ (𝑣∗)) (8) 

when 0nks  ; 

The next stage – saving the calculation results and outputting the results, clearing the 

workspace, bringing the environment to its default state, checking the checksums and exiting the 

program code execution environment. Generation of the conjugation function for an approximation 

of the phonocardiographic signal alternative is calculated by the expression (9): 

 𝐸(𝑠𝑛𝑘 , 𝐴𝑛𝑘 , 𝛹𝐴, 𝑇𝑛𝑘 , 𝜈𝑛𝑘 , 𝑡𝑛) =

{
 
 

 
 

𝐴𝑛𝑘

1+(
0,5𝑇𝑛𝑘
𝑡𝑛

)
𝜈𝑛𝑘10

+𝛹𝐴 , 𝑠𝑛𝑘 > 0

2𝐴𝑛𝑘

1−(
0,5𝑇𝑛𝑘
𝑡𝑛

)
𝜈𝑛𝑘10

+𝛹𝐴 , 𝑠𝑛𝑘 < 0
 (9) 

𝑁𝑘 – number of phonocardiographic signal contractions; 𝑀𝑘 – number of phonocardiographic 

signal intervals within𝑘 -th contraction; 𝑠𝑛𝑘 – marker of growth/decline of the approximating 

function of 𝑛 -th interval of 𝑘 -th contraction; 𝐴𝑛𝑘 – amplitude of 𝑛 -th interval of 𝑘 -th contraction; 

𝑇𝑛𝑘 – duration of 𝑛 -th interval of 𝑘 -th contraction; 𝜈𝑛𝑘  – rate of growth/decline of 𝑛 -th interval of 𝑘 

-th contraction; 𝑡𝑛 – certainty interval of 𝑛 -th interval; 𝑤 – Blackman window. 
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Based on the above mathematical apparatus, a flowchart of the subroutine for generating the 

structure of a bandpass filter (Figure 3) has been drawn up, including the following operations: at the 

stage of data initialisation, the program, after starting, sets up the environment and brings it to its 

default state. Carries out setting of input parameters and carries out initial settings of software objects 

and functions; syntheses the desired filter (poles b) given the values of the variables: 𝑡𝑛 – certainty 

interval of 𝑛-th interval; 𝑜 – overlap ratio of 𝑛-th interval with dimensionality 𝑇𝑛𝑘 of 𝑘 -th 

contraction relative to 𝑛−1-th interval with dimensionality 𝑇𝑛−1𝑘  of 𝑘-th contraction; 𝑓𝑛𝑙 – bandwidth 

lower limit; 𝑓𝑛ℎ  – bandwidth upper limit; 𝑓_𝑏_𝑟𝑎𝑡𝑖𝑜_1 – value of the first edge of the band pass filter 

(0.15); 𝑓_𝑏_𝑟𝑎𝑡𝑖𝑜_ℎ – the value of the second edge of the band pass filter (0.15); the next stage is 

saving the results of the calculation and displaying the results, clearing the workspace, bringing the 

environment to its default state, checking the checksums and exiting the runtime. 

 

Figure 3. The flowchart of bandpass filter structure generation 

 

The structure of the bandpass filter is generated according to the expression (10): 

 ℎ(𝑛) = 𝑓(𝑥, 𝑓𝑛𝑘𝑙 +𝛹𝑓𝑛𝑘𝑙 , 𝑓𝑛𝑘ℎ + 𝛹𝑓𝑛𝑘ℎ) (10) 

where 𝑓𝑛𝑘𝑙(𝑀(𝑓𝑖𝑛𝑘𝑙), 𝐷(𝑓𝑖𝑛𝑘𝑙)) and 𝑓𝑛𝑘ℎ(𝑀(𝑓𝑖𝑛𝑘ℎ), 𝐷(𝑓𝑖𝑛𝑘ℎ)) – random variables for amplitudes, 

low and high cutoff of bandpass filter of 𝑛 -th interval of 𝑘 -th contraction with Gaussian distribution 

with mathematical expectation 𝑀{𝐴} = 𝑀(𝑓𝑖𝑛𝑘𝑙) = 𝑀(𝑓𝑖𝑛𝑘ℎ) = 0 and variances 

𝐷(𝑓𝑖𝑛𝑘𝑙), 𝐷(𝑓𝑖𝑛𝑘ℎ). 𝑘 ∈ 𝑍, 𝑛 ∈ 𝑍 – sets of real numbers. 

 

A flowchart of band-limited noise generation is shown in the Figure 4. 
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Figure 4. The flowchart of band-limited noise generation 

 

Flowchart of the subroutine for generating band-limited noise: at the stage of data initialisation, 

the program, after starting, makes settings for the environment and brings it to the default state and 

reads the values of the variables; further, band-limited noise is generated depending on the same 

variables as for the subroutine for generating the band-pass filter structure; the next stage is saving 

the results of the calculation and displaying the results, clearing the workspace, bringing the 

environment to its default state, checking the checksums and exiting the program code execution 

environment. The distribution density of the signal has the shape of a Gaussian curve, which 

corresponds to a normal distribution. Band-limited noise is generated according to the expression: 

 𝑤𝑛𝑏𝑙 = (𝑤 𝑤𝑛(𝑇𝑛𝑘−𝑜 𝑇𝑛−1𝑘
)ℎ(𝑓𝑛𝑘𝑙 +𝛹𝑓𝑛𝑘ℎ , 𝑓𝑛𝑘ℎ +𝛹𝑓𝑛𝑘ℎ) (11) 

where 𝑤 – Blackman window; 𝑤𝑛 – white noise; ℎ(𝑓𝑛𝑘𝑙 +𝛹𝑓𝑛𝑘𝑙 , 𝑓𝑛𝑘ℎ +𝛹𝑓𝑛𝑘ℎ) – bandpass filter 

convolution kernel. 

As a result of processing phonocardiographic signal and a dedicated bypass signal, it performs 

approximation of the bypass signal using a sigmoid function. In this case, the corresponding vector of 

the unit amplitude of the phonocardiographic signal frequency filling is generated in accordance with 

physiological data. One of the most common and at the same time the most informative methods for 

studying stationary signals is the windowed Fourier transform. This approach makes it possible to see 

the instantaneous amplitude of each harmonic over time. The classical Fourier transform takes into 

account the spectrum of the signal, which is taken over the entire range of existence of the variable. 
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Most often, interests are focused only on the local distribution of frequencies, while it is necessary to 

preserve the primary variable (usually time). In this case, a generalised Fourier transform is used, the 

so-called windowed Fourier transform. First, we need to select some window function (12): 

      
1

,
2

iF t f W t e d   


 


   (12) 

where 𝐹(𝑡,𝜔) – gives the frequency distribution of a part of the original signal 𝑓(𝑡) over time 𝑡; 

𝑊(𝜏 − 𝑡) – sliding window function. 

Let the images 𝑓(𝑛1, 𝑛2) and 𝑔(𝑛1, 𝑛2) be described by models of homogeneous random fields. 

The degree of correspondence of a real image to an ideal one can be the mean value of the square of 

their difference (13): 

 𝜀𝑘𝑣
2 = 𝐸{(𝑓 − 𝑔)2} (13) 

This value will be constant throughout the entire field of arguments, therefore, the arguments (the 

same for f, g) are omitted for brevity. If the mathematical expectations f and g are equal, then the 

difference has a zero mean, and the value 𝜀𝑘𝑣
2  takes on the meaning of the variance of the difference 

(and the value of the standard deviation of g from f) of two images. For a stationary model, it is 

usually assumed that the ergodicity condition is satisfied, under which averaging over an ensemble of 

contractions can be replaced by averaging over one contraction. Then for continuous images at (14): 

 0 ≤ 𝑛1 ≤ 𝑁1 − 1,  0 ≤ 𝑛2 ≤ 𝑁2 − 1 (14) 

we obtain (15): 

    
2 2

1 1

22

1 2 1 2 1 2

1 2

1
, ,

4

L L

kv

L L

f x x g x x dx dx
L L


 

      (15) 

and for discrete data we obtain (16): 

    
211

1 21 1

11
22

1 2 1 2

01 2 0

1
, ,

4

NN

kv

n n

f n n g n n
N N





 

      (16) 

The result of calculating the root-mean-square criterion is 0.035; which is close to an unbiased 

estimate of the standard deviation of the normal distribution of one sample. Dispersion (17): 

 𝐷[𝑥] = 𝜎2; 𝜎2 =
∑(𝑥𝑖−𝑎)

2𝑛𝑖

∑𝑛𝑖
; 𝜎 = √𝐷 = √0,001225 = 0,035) (17) 

Therefore, an objective assessment indicates the correspondence of the simulation model to 

the real signal. Assessment of the reliability of a selected mathematical model of the 

phonocardiographic signal is simultaneously registered as a periodically correlated random process; 

carried out in the time domain using first-order statistics, namely: 50 values of the arithmetic mean of 
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the stationary components of the phonocardiographic signal (variance over contractions) were 

calculated at 50 intervals, each of which was 10 contractions of the phonocardiographic signal cut out 

along the P-waves with a duration of 10 contractions, provided that in at each interval, the heart rate 

variation is less than 5% (Baimbetov et al., 2020). In addition to calculating the kurtosis and 

asymmetry coefficients, the distribution normality of the sequence under study was estimated using 

the Kolmogorov-Smirnov consistency criterion, which is used to test hypotheses regarding 

continuous distribution laws of quantities. The Kolmogorov-Smirnov criterion allows checking the 

consistency of the empirical distribution function with the theoretical one. The validity of the 

hypothesis is tested (18): 

 𝐻0:𝐹
∗(𝑥) = 𝐹(𝑥) (18) 

contrary to hypothesis (19): 

 𝐻1:𝐹
∗(𝑥) ≠ 𝐹(𝑥) (19) 

Kolmogorov's goodness-of-fit test is based on the fact that the distribution of the difference 

between the theoretical and empirical distribution functions (20): 

 𝐷𝑛 = 𝑠𝑢𝑝|𝐹
∗(𝑥) − 𝐹(𝑥)| (20) 

Is the same for every 𝐹(𝑥). The value 𝐷𝑛 is called the Kolmogorov statistics. 

For small 𝑛 tables of critical points 𝐷𝑘𝑟 exist for the Kolmogorov statistics. For big 𝑛 the limit 

Kolmogorov distribution is used (21): 

      
2 21 2

1

1 2 1 ,
k k x

n

k

P nD x Q x e n


 



       (21) 

For the Kolmogorov distribution, the limit for the statistics of cell 𝜆 = √𝑛𝐷𝑛 there are also 

tables of critical points 𝜆𝑘𝑟. In practice, they are used at 𝑛 > 20. The statistic 𝜆 = √𝑛𝐷𝑛 do not 

depend on the type of the unknown distribution function. In the general case, the distribution function 

𝐹(𝑥) can be discontinuous, although they should be discontinuities of the first kind, abrupt changes. 

Therefore, sample statistic 𝜆 are generally determined using the exact upper bound (sup) (22)–(23): 

Smirnov statistic (22): 

 𝐷𝑛
− =

𝑠𝑢𝑝
𝑥
[𝐹(𝑥) − 𝐹∗(𝑥)], 𝜆 = √𝑛𝐷𝑛

− (22) 

Kolmogorov statistic (23): 

 𝐷𝑛
+ =

𝑠𝑢𝑝
𝑥
[𝐹∗(𝑥) − 𝐹(𝑥)], 𝜆 = √𝑛𝐷𝑛

+  (23) 

in addition (24): 

 𝐷𝑛 =
𝑚𝑎𝑥
𝑥
[𝐷𝑛

−, 𝐷𝑛
+] (24) 
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In this case, the hypothesis testing algorithm looks like this: 

1) the input data are presented as an interval statistical (variation) series; 

2) the value of the empirical distribution function 𝐹∗(𝑥) is found; 

3) using a hypothetical distribution function, the value 𝐹∗(𝑥) of the theoretical distribution 

function is considered, which corresponds to the input data of the random variable  ; 

4) 𝐷𝑛 is found and the observed value of the sample statistic 𝜆𝐻 = √𝑛𝐷𝑛 is calculated. 

5) for a given level of significance 𝛼 critical points 𝜆𝛼  are found from the tables of quantiles of 

the Kolmogorov distribution; 

6) comparing the observed values of the sample statistics 𝜆𝐻 with the critical point 𝜆𝛼 one of 

two decisions is made: if 𝐷𝑛√𝑛 < 𝜆𝛼, then, it is considered that there are no reasons for rejecting the 

null hypothesis, that is, the hypothetical distribution function is consistent with the investigated data 

on the phonocardial signal dispersion at 50 intervals; if 𝐷𝑛√𝑛 > 𝜆𝛼, then the null hypothesis is 

rejected in favour of an alternative. 

It is important that the Kolmogorov criterion cannot be applied in the case of grouped data. The 

algorithm for calculating the Kolmogorov-Smirnov consistency criterion is also implemented in the 

syntax of the Matlab programming language. The calculated value of the Kolmogorov-Smirnov test 

is 0.0075 with a critical value of 0.009, which allows us to accept the null hypothesis and assert that 

the distribution of variances of stationary components over 50 intervals is normal, and the p-value of 

the test is equal to 0.2017 (a scalar value in the range [0, 1]) is interpreted as the probability of 

observing the test statistic as extreme, or more extreme than the value observed under the null 

hypothesis. Small p values call into question the validity of the null hypothesis. An important 

approach to developing a rule for choosing solutions in the absence of a priori information about 

losses and the probability of states is the Neumann-Pearson criterion. In accordance with this 

criterion, a rule is chosen that provides the minimum possible value 𝛽 of the second kind probability, 

provided that the probability of an error of the first kind does not exceed a given value 𝛼. Among all 

the criteria that distinguish between hypotheses 𝐻0, 𝐻1 with a given first kind error 𝛼, the most 

significant is the likelihood ratio criterion. According to the Neumann-Pearson theorem, there is a 

constant C, depending only on 𝛼, while the critical region 𝑆 of the most significant criterion has the 

form (25): 

 𝑆 = {𝑥:𝑊𝑛(𝑥1, … , 𝑥𝑛|𝑠0) ∪
𝑊𝑛(𝑥1,…,𝑥𝑛|𝑠1)

𝑊𝑛(𝑥1,…,𝑥𝑛|)𝑠0
> 𝐶,𝑊𝑛(𝑥1, … , 𝑥𝑛|𝑠0) ≠ 0} (25) 

Where the constant C is a solution to the equation (26): 
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 𝑃 (
𝑊𝑛(𝑥1,...,𝑥𝑛|𝑠1)

𝑊𝑛(𝑥1,...,𝑥𝑛|𝑠0)
> 𝐶|𝑠0) = 𝛼 (26) 

The rule for choosing a solution according to the Neumann-Pearson criterion has the greatest 

significance among all other rules for which the significance level does not exceed  . As a 

consequence, it is possible to maximise the value (27): 

     1 1 11 , , | ...n n n
S

W x x s dt dt      (27) 

provided (28) that: 

  1 1 1, , | ...n n n
S
W x x s dt dt    (28) 

The set 𝑇 = {𝑥:𝑊𝑛(𝑥1, … , 𝑥𝑛|𝑠0) = 0} does not change the value of the criterion 𝛼, but 

increases its significance. It is accepted that 𝑇 ⊆ 𝑆, for the case 𝑆 ⊆ 𝑅𝑛\𝑇. Therefore (29): 

 
 

 
 1 1

1 0 1

1 0

, , |
1 , , | ...

, , |

n n

n n n

n nS

W x x s
W x x s dt dt

W x x s



  

  (29) 

given that (30): 

  1 1 1, , | ...n n n

S

W x x s dt dt    (30) 

As a consequence, the mean value of the random variable is maximised (31): 

 𝑙(𝑥1, . . . , 𝑥𝑛) =
𝑊𝑛(𝑥1,…,𝑥𝑛|𝑠1)

𝑊𝑛(𝑥1,…,𝑥𝑛|𝑠0)
 (31) 

provided that the null hypothesis 𝐻0 is true. The decision selection rule based on the Neumann-

Pearson criterion is a special case of the Bayesian solution in which the quantity 
𝑞

𝑝
𝐶 is replaced by 

the quantity 𝐶. Since if the null hypothesis 𝐻0 is true, the random variable (32): 

 𝑥̄ ∈ 𝑁 (𝑎0,
𝜎2

𝑛
) ,

(𝑥̄−𝑎0)

𝜎
√𝑛 ∈ 𝑁(0,1) (32) 

then the probability of getting into the critical region is (33): 

 𝑃(𝑆\𝐻0) = 𝑃(𝑥̄ ≥ 𝐶1 , 𝑎 = 𝑎0) = 1 − 𝐹 [
(𝐶1−𝑎0)√𝑛

𝜎
] =

1

2
− 𝛷 [

(𝐶1−𝑎0)√𝑛

𝜎
] = 𝛼 (33) 

where  
2

2

0

1
Φ

2

x t

x e dt




   – normal distribution function related to the integral Laplace function by the 

relation (34): 

 𝐹(𝑥) = 𝛷(𝑥) +
1

2
 (34) 

Let us denote 𝑢𝑎 as the solution of the equation (35): 

 𝛷(𝑥) =
1

2
− 𝛼 (35) 

Quantity 𝑢𝛼 with level quantile (36): 
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1−2𝛼

2
 (36) 

for the standard normal distribution and is taken as the critical point. Its values are found from the 

table of the Laplace function with the condition (37): 

  
1

Φ
2

u    (37) 

Then from the equation (38): 

 
 1 0 1

Φ
2

C a n




 
  

  

 (38) 

from the tables of the Laplace function, the quantile u  is found and the constant 1C  is determined assuming 

that (39): 

 
(𝐶1−𝑎0)√𝑛

𝜎
= 𝑢𝛼  (39) 

or (40): 

 𝐶1 = 𝑎0 +
𝜎

√𝑛
𝑢𝛼 (40) 

The criterion for testing a hypothesis is formulated as follows: if 𝑎0 < 𝐶1 < 𝑎1, then at 𝑥̄ > 𝐶1 

the hypothesis 𝐻1 is accepted, and at 𝑥̄ ≤ 𝐶1 the hypothesis 𝐻0 is accepted. 

Thus, the most significant criterion for testing a hypothesis 𝐻0: 𝑎 = 𝑎0 with an alternative 

𝐻1: 𝑎 = 𝑎1: 

whereas (41): 

 𝑥̄ ≥ 𝑎0 +
𝜎

√𝑛
𝑢𝛼 (41) 

then hypothesis 𝐻0 is rejected, 

whereas (42): 

 𝑥̄ < 𝑎0 +
𝜎

√𝑛
𝑢𝛼 (42) 

then hypothesis 𝐻0 is accepted. 

If the hypothesis 0H  is correct, but an event 1x C  has occurred, then the hypothesis 𝐻1 is 

accepted, that is, an error of the first kind. If the hypothesis 1H  is correct, but an event 1x C has 

occurred, then the hypothesis 𝐻0 is accepted, then this is an error of the second kind. An important 

negative factor, the influence of which must be minimised, is the breathing. To assess the reliability 

of the processing results, the CFAR method (Constant False Alarm Rate or the constant probability 

of false alarms) was used, which is a modification of the Neumann-Pearson statistical criterion and is 
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adaptive, which makes it possible to assess the reliability of the phonocardial signal processing 

results. The reliability of estimates is calculated by the formula (43): 

 𝑃𝑑 =
𝑠𝑢𝑚(𝐷>𝑇)

𝑁𝑡𝑟𝑖𝑎𝑙
 (43) 

where 𝑃𝑑 – reliability value, which in terms of Monte Carlo modeling is the ratio of the 

number of sections to the “number of attempts”, that is, the total length of the sequence under 

consideration; 𝐷 – averaged values of the variance of the phonocardiographic signal samples; 

dynamic discrimination threshold calculated in a sliding window (44): 

 𝑇 = 𝑎𝑃𝑛 (44) 

scale factor (45): 

 𝑎 = 𝑁 (𝑃𝑓𝑎
−1/𝑁

− 1) (45) 

average of readings 𝑥𝑚 of the worked out sequence in a window of length 𝑁 (46): 

 
1

1 N

n m

m

P x
N 

   (46) 

false alarm probability; 𝑒𝑟𝑓 – error function (47): 

 𝑃𝑓𝑎 =
1

2
[1 − 𝑒𝑟𝑓(√𝑆𝑁𝑅)] (47) 

square root of the signal-to-noise ratio; 𝑁𝑠 – signal significance; 𝑀𝑠 – gain of the matched filter; 𝑇𝑚𝑓 

– threshold after matched filter (48): 

 √𝑆𝑁𝑅 =
𝑇𝑚𝑓

√𝑁𝑠𝑀𝑠
  (48) 

 

4. CONCLUSIONS 

Results of the calculated instantaneous confidence values dP  of the reliability of the 

stationary components of the phonocardiographic signal at the given probabilities of error 𝑃𝑓𝑎 =

(0,001;  0,01;  0,1), indicate that the estimates of the stationary components of the 

phonocardiographic signal are invariant-informative signs that can be used to assess the state of the 

cardiovascular system with high reliability (0.9784-0.9872) in a person (in a normal state or with 

medical condition) at an early stage of the development of pathology, which confirms the adequacy 

of the mathematical model of the phonocardiographic signal simultaneously recorded in the form of a 

periodically correlated random process. To minimise the possibility of an error of the second kind 

and, given the fact that the signal under study is stochastic, a double verification of the simulation 

results by introducing an additional procedure for assessing the results obtained using the Smirnov 
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homogeneity criterion, which is used to test the hypothesis that two independent samples belong to 

the same th distribution law. It was found that the reliability of the results is (0.9873-0.9952). The 

authors have created a test signal with known parameters, made changes to it, and processed the test 

signal by the proposed method for experimental verification of the theoretical results of 

phonocardiographic signal processing. It was found that the method is suitable for processing 

phonocardiographic signals. 
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