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ABSTRACT  

Even though countries from all over the world are modifying their national educational curriculum in 
order to include computational thinking skills, there is not an agreement in the definition of this ability. This 
is partly caused by the myriad of definitions that has been proposed by the scholar community. In fact, there 
are multiple examples in educational scenarios in which coding and even robotics are considered as 
synonymous of computational thinking. This paper presents a text network analysis of the main definitions 
of this skill that have been found in the literature, aiming to offer insights on the common characteristics they 
share and on their relationship with computer programming. As a result, a new definition of computational 
thinking is proposed, which emerge from the analysed data. 
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RESUMEN 

A pesar de que países de todo el mundo están modificando su plan de estudios nacional para incluir 
habilidades de pensamiento computacional, no hay un acuerdo en la definición de esta capacidad. Esto se 
debe en parte a la gran cantidad de definiciones propuestas por la comunidad académica. De hecho, hay 
múltiples ejemplos en escenarios educativos en los que la programación e incluso la robótica se consideran 
sinónimos del pensamiento computacional. Este artículo presenta un análisis de la red de texto de las 
principales definiciones de esta habilidad que se han encontrado en la literatura, con el objetivo de ofrecer 
información sobre las características comunes que comparten y sobre su relación con la programación 
informática. Como resultado, se propone una nueva definición de pensamiento computacional que emerge 
de los datos analizados. 
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1. INTRODUCTION 

All over the world, governments have started to modify their national curriculum at both 

primary and secondary educational levels to incorporate Computational Thinking (CT), since this 

ability is considered a key set of problem-solving skills that must be developed by all learners 

(Bocconi et al., 2016). Still, there seems to be a lack of consensus on a formal definition of CT 

(Grover, 2015; Kalelioglu, Gülbahar, & Kukul, 2016; Román-González, Moreno-Leon & Robles, 

2017) and, consequently, a myriad of CT definitions has been proposed in the last few years.  

This diversity of theoretical approaches to CT, and the resulting lack of standardization, is 

problematic from the educational point of view. This is evidenced by the fact that in many 

educational contexts CT and programming (or coding) are used almost as synonymous 

(Balanskat & Engelhardt, 2015). However, what is the relationship between programming and 

CT, based on the definitions of the latter? Does programming arise as a fundamental core of CT? 

And what about the relationship between CT and robotics? 

In addition, how different are the definitions of CT proposed during the last years? Do they 

share some common characteristics? Or are they focused on distinct dimensions of this 

competence?  

In order to address these questions, we have collected the main CT definitions published in 

the literature, which are presented in Section 2. We have studied these definitions using a text 

network analysis (Paranyushkin, 2011), which is described in Section 3. Section 4 summarizes 

the main results, with a special focus on the most influential elements of the CT definitions, the 

main themes or topics of words, and the structure of the discourse. Finally, in Section 6 we discuss 

these findings and their implications, and conclude the paper with a new “data-driven” definition 

of CT.  

 

Principales aportaciones del artículo y futuras líneas de investigación: 

• Las diferentes definiciones del concepto de pensamiento computacional coinciden en los elementos 

principales. 

• Es posible aunar nodos comunes que evidencian que la dispersión conceptual es solo aparente. 
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2. BACKGROUND 

In order to review the main definitions of CT that can be found in both academic and grey 

literature, we have reused the literature review performed in the recently published doctoral 

dissertation by one of the authors of this work (Moreno-León, 2018).  

The first appearance of the term CT, although without elaboration, was in Seymour Papert’s 

Mindstorms when discussing about the idea of creating samba schools for mathematics: 

 
There have already been attempts in this direction by people engaged in computer hobbyist clubs and 
in running computer drop-in centers. In most cases, although the experiments have been interesting 
and exciting, they have failed to make it because they were too primitive. Their computers simply did 
not have the power needed for the most engaging and shareable kinds of activities. Their visions of 
how to integrate computational thinking into everyday life was insufficiently developed. But there will 
be more tries, and more and more. And eventually, somewhere, all the pieces will come together and 
it will catch. (Papert, 1980, p. 182). 

 

But the term CT did not become popular until 2006, when Wing published her seminal paper 

on CT with the following definition:  

 
CT involves solving problems, designing systems, and understanding human behavior, by drawing on 
the concepts fundamental to computer science. CT includes a range of mental tools that reflect the 
breadth of the field of computer science [...]. It represents a universally applicable attitude and skill set 
everyone, not just computer scientists, would be eager to learn and use. (Wing, 2006, p. 33).  

 

The timing was more opportune at that moment, and the term quickly gained popularity and 

raised the interest of both the scholar and educational communities. Since then, other influential 

authors and organizations have proposed new definitions for CT from different perspectives.  

One of these new, alternative definitions is provided by Lu and Fletcher, who defend that 

being proficient in CT “helps us to systematically and efficiently process information and tasks” 

(Lu & Fletcher, 2009, p. 261).  

Aiming to support educators in the introduction of CT in K-12, the Computer Science 

Teachers Association and the International Society for Technology in Education developed the 

following operational definition of CT:  

 
CT is a problem-solving process that includes (but is not limited to) the following characteristics: 
formulating problems in a way that enables us to use a computer and other tools to help solve them; 
logically organizing and analyzing data; representing data through abstractions such as models and 
simulations; automating solutions through algorithmic thinking (a series of ordered steps); identifying, 
analyzing, and implementing possible solutions with the goal of achieving the most efficient and 
effective combination of steps and resources; and generalizing and transferring this problem-solving 
process to a wide variety of problems. (ISTE & CSTA, 2011, p. 1). 

 

The vision of CT proposed by Wing has also received criticism, though. Hence, Denning 

argues that CT is equivalent to algorithmic thinking, a concept well known since the 1950s that 

could be defined as “a mental orientation to formulating problems as conversions of some input 

to an output and looking for algorithms to perform the conversions.” (Denning, 2009, p. 28). 

Most of the complaints that the term received were in terms of ambiguity and vagueness. As 

a result, in 2011 Wing proposed a new definition of CT aiming to clarify certain aspects of her 

initial proposal: “CT is the thought processes involved in formulating problems and their solutions 

so that the solutions are represented in a form that can be effectively carried out by an information-

processing agent”. (Wing, 2011, p. 1).  

A similar definition is introduced by Aho, who defines CT as the “thought processes involved 

in formulating problems so their solutions can be represented as computational steps and 

algorithms.” (Aho, 2011, p. 2). 
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Placing the focus on the educational community, Barr & Stephenson define CT as:  

 
[…] an approach to solving problems in a way that can be implemented with a computer. Students 
become not merely tool users but tool builders. They use a set of concepts, such as abstraction, 
recursion, and iteration, to process and analyze data, and to create real and virtual artifacts. CT is a 
problem-solving methodology that can be automated and transferred and applied across subjects. 
(Barr & Stephenson, 2011, p. 49).  

 

In a report advocating for computing education in UK schools, the British Royal Society goes 

one step forward by highlighting the presence of computation in nature as another reason to teach 

CT, which was defined as “the process of recognizing aspects of computation in the world that 

surrounds us, and applying tools and techniques from Computer Science to understand and 

reason about both natural and artificial systems and processes.” (Furber, 2012, p. 29).  

Following this approach, in the context of an intervention to integrate CT with K-12 science 

education, Sengupta et al. propose a theoretical framework where authors state that  

CT draws on concepts and practices that are fundamental to computing and computer science. It 
includes epistemic and representational practices, such as problem representation, abstraction, 
decomposition, simulation, verification, and prediction. However, these practices are also central to the 
development of expertise in scientific and mathematical disciplines. (Sengupta et al., 2013, p. 351). 

 

Aiming to gather the elements that are accepted as comprising CT in most CT definitions in 

educational environments, Grover & Pea review aforementioned definitions and propose the 

following elements as the basis of curricula that aim to support CT learning and assessment: 

[…] abstractions and pattern generalizations (including models and simulations); systematic 
processing of information; symbol systems and representations; algorithmic notions of flow of control; 
structured problem decomposition (modularizing); iterative, recursive, and parallel thinking; conditional 
logic; efficiency and performance constraints; and debugging and systematic error detection. (Grover 
& Pea, 2013, p. 39).  

 

Also with the aim of supporting educators, Computing at School proposed a framework that 

states that, when working in the classroom, CT involves both concepts (logic, algorithms, 

decomposition, patterns, abstraction, and evaluation) and approaches (tinkering, creating, 

debugging, persevering, and collaborating), thus pointing to some non-cognitive skills being part 

of CT (Csizmadia et al., 2015).  

As we can see, the computer science educational community has had difficulties in finding 

a definition of CT that everyone agrees upon. This is a view shared by Mannila et al., who wrote 

a report on the current status of the coverage of computer science in K-9 education in several 

countries (Mannila et al., 2014). In this report, the authors define CT as a set of concepts and 

thinking processes from computer science that help in formulating problems and their solutions 

in different disciplines.  

Besides multiple contributions to define CT, we also find authors and organizations that 

modify their initial proposals over time. Hence, in the [Interim] CSTA K-12 Computer Science 

Standards1 we find yet another definition of CT by the CSTA Standards Task Force:  

 
We believe that CT is a problem-solving methodology that expands the realm of computer science into 
all disciplines, providing a distinct means of analyzing and developing solutions to problems that can 
be solved computationally. With its focus on abstraction, automation, and analysis, CT is a core 
element of the broader discipline of computer science. (CSTA, 2016, p. 6) 

 
More recently, two new definitions for CT have been published. Tedre & Denning describe 

CT as “a popular phrase that refers to a collection of computational ideas and habits of mind that 
people in computing disciplines acquire through their work in designing programs, software, 
simulations, and computations performed by machinery.” (Tedre & Denning, 2016, p. 120). Lastly, 
in a more informal approach, Wolfram states that CT: 

 

                                                           
1 https://www.csteachers.org/Page/standards 
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 “intellectual core is about formulating things with enough clarity, and in a systematic enough way, that 
one can tell a computer how to do them [...] CT is a broad story, because there are just a lot more 
things that can be handled computationally [...] But how does one tell a computer anything? One has 
to have a language” (Wolfram, 2016). 

 

As a summary, Table 1 shows the reviewed publications that include a definition of CT 

ordered by date of publication, and also shows if each contribution was published in a book, 

journal, magazine, conference proceedings or official report, among others. As can be seen, a 

majority of the proposals following Wings’ definition were published in computer science 

environments, while since 2011 most of the definitions were proposed in scenarios closer to the 

educational community. 

Table 1. Reviewed publications that propose a CT definition 
 

Publication Type 

(Papert, 1980) Book - Mindstorms 

(Wing, 2006) Magazine - Communications of the ACM 

(Lu & Fletcher, 2009) Newsletter – SIGCSE Bulletin 

(Denning, 2009) Magazine - Communications of the ACM 

(Wing, 2011) Magazine – The LINK 

(Aho, 2011) Symposioum – Ubiquity 

(Barr & Stephenson, 2011) Journal – Inroads 

(ISTE & CSTA, 2011) Report - ISTE & CSTA 

(Furber, 2012) Report - Royal Society 

(Sengupta et al., 2013) Journal – Education and information technologies 

(Grover & Pea, 2013) Journal - Educational researcher 

(Mannila et al., 2014) Report – Working group ITiCSE 

(Csizmadia et al., 2015) Report - CAS 

CSTA K-12 CS Standards, 2016 Report - CSTA 

(Tedre & Denning, 2016) Proceedings - Koli calling  

(Wolfram, 2016) Opinion column 

 

3. METHODS 

In order to detect the central concepts of CT that emerge from the myriad of CT definitions 

that have been reviewed, a text network analysis (Paranyushkin, 2011) was performed on a 

document containing all these definitions. Especifically, we used InfraNodus, which is an open-

source tool used by the academic community to perform text-related studies and to make sense 

of pieces of disjointed textual data (Paranyushkin, 2019). The solution automates the visualization 

of a text as a network; shows the most relevant topics, their relations, and the structural gaps 

between them; and enables the analysis of the discourse structure and the assessment of its 

diversity based on the community structure of the graph (Paranyushkin, 2019).  

As a first step, the tool removes the syntax information (such as commas and dots) and 

converts the words into their morphemes to reduce redundancy (Paranyushkin, 2019). For 

instance, “computers” becomes “computer” or “programmed” becomes “program”. In addition, the 

tool removes articles, conjunctions, auxiliary verbs and some other frequently used words, such 

as ’is’ or ’the’. Thus, a sentence that reads “the process of recognizing aspects of computation in 

the world that surrounds us” is turned into “process recognize aspect computation world 

surround”. 

The resulting sequence is then converted by Infranodus into a directed network graph, where 

the nodes are the different words while the edges represent their co-occurrences. The tool 
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identifies the nodes that appear most often on the shortest paths between any two randomly 

chosen nodes in the network -i.e., betweenness centrality- and detects the groups of nodes that 

tend to appear more often together -topical groups-. The result is a visual network representation 

of the text that, based on colors and sizes, enables a clear vision of its structure and topics. 

Finally, the tool also identifies the structure of the discourse, which can be categorized as 

dispersed, diversified, focused or biased (Paranyushkin, 2019). 

4. RESULTS 

The text network analysis generates 148 nodes (words) and 658 edges (co-occurrences). 

The average degree, which represents the number of nodes every node is connected to, is 4.45. 

Figure 1 is a graph image that can be used to get a clear visual representation of the main 

topics and influential keywords of the reviewed CT definitions. Colors in Figure 3.1 indicate the 

distinct contextual clusters, or themes, which are communities of words that are closely related. 

On the contrary, words that appear in different contexts are shown far away from each other. The 

size of the nodes reflects their betweenness centrality, which is the number of different themes or 

contexts each node connects.  

 

 
   Figure 1. Visual representation of the main topics and influential keywords in CT definitions. 
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As can be seen in Figure 1, the most influential elements of the network, since they link 

different topics together, are “problem”, “computer”, “solution” and “process”. These nodes are 

shown bigger on the graph. 

Table 2 presents the main words within the most influential contextual clusters. These words 

are the nodes that have more connections within each group, being in consequence the most 

influential words of the themes. However, connections to the other clusters in the network are not 

considered in this case. Color column in Table 2 refers to the colors in Figure 1. 

 
Table 2. Most influential communities of words in CT definitions. 

 

Cluster Words in the context Color1 

1 computer, science, tool Orange  

2 problem, solve, solution SpringGreen  

3 abstraction, simulation, decomposition Fuchsia 

4 system, information, algorithmic Olive 

5 logic, debug, performance Purple 

1 Refers to the colors used in Figure 1 
 

In terms of network structure, the analysis indicates that it is “focused” (modularity -which 

measures how pronounced is the community structure- is 0.49, 18% of words are in the top topic 

and its influence dispersal is 40%). This means that the most influential words are concentrated 

around one topic and the discourse is focused on a certain perspective.  

4. DISCUSSION AND CONCLUSIONS 

The results of the text network analysis show that neither programming nor coding emerge 

among the most influential words of the main CT definitions. Why are, then, CT and programming 

considered almost synonymous in many contexts?  

As discussed by Voogt et al.: 

the concepts of CT and the practice of programming are difficult to delineate in the literature because 
many CT studies or discussions of theory use programming as their context [...]. This can be confusing 
to the reader and often lead to the impression that CT is the same as programming or at the very least 
that CT requires the use of programming. (Voogt et al., 2015, p. 716)  

 

So even though, as stated by our text network analysis, scholars do not claim that 

programming must be the required context to develop CT skills, a vast majority of interventions 

in which these skills are trained make use of different types of programming tasks (Kalelioglu et 

al., 2016; Lye and Koh, 2014).  

However, although programming makes CT concepts concrete and nowadays is therefore a 

de facto method for the learning and teaching of these skills (Bocconi et al., 2016) this situation 

might change in the near future due to several factors. On the one hand, educators and 

researchers may find other strategies to develop CT skills, as it is already the case with the use 

of unplugged activities (Brackmann et al., 2017). On the other hand, the intense development of 

artificial intelligence solutions, especially those based on machine learning, may alter dramatically 

the way computer programming is performed (Rodríguez-García, Moreno-León, Román-

González & Robles, 2019).  

In other words, just like we distinguish between verbal aptitude -which is in the order of 

human cognitive abilities, with an important innate base- and literacy skill -which is an instrumental 

competence that requires a relatively formal teaching and learning process- we could similarly 

establish a distinction between CT -human cognitive ability- and programming skills -instrumental 

competence- (Román-González, Pérez-González & Jiménez-Fernández, 2017). However, if CT 

is, first and foremost, a human cognitive ability, it is very striking that "cognition" or "cognitive 

ability" do not appear as key terms of the analysis. Perhaps this is a result of the fact that there 
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are more definitions of CT proposed by computer scientists than by psychologists or pedagogues, 

as shown in Table 1?  

It is also worth noting that robotics, which is sometimes used in school scenarios as a context 

to develop CT skills (Balanskat & Engelhardt, 2015) does not even appear in the 148 nodes of 

the analysis. 

As mentioned earlier, the analysis indicates that the network structure is “focused”. Such 

discourse structure is characteristic “for newspaper articles, essays, reports, which are designed 

to provide a clear and concise representation of a certain idea” (Paranyushkin, 2019). This result 

is quite interesting, since one might expect that a list of definitions could have a more dispersed 

or diversified structure. Consequently, this result shows that, even with some differences -since 

the structure is not biased-, the definitions have lots of elements in common.  

Finally, taking into account both the most influential elements and the communities of words 

highlighted by the text network analysis, we could almost propose (yet) a new definition of CT. 

Based on this data, CT would be the ability to formulate and represent problems to solve them by 

making use of tools, concepts and practices from the computer science discipline, such as 

abstraction, decomposition or the use of simulations. Such data-driven definition could be of 

interest for the educational community, since it clarifies the relationship between CT and 

programming (or robotics, for that matter), being the former a cognitive ability of the subject, and 

the latter just one of the means to develop it.  
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