Faize, F. A, Akhtar, M., y Hamayun, M. (2024). Desarrollo de habilidades de escritura persuasiva a través de la argumentación científica utilizando un diseño de series temporales. *Revista de Investigación Educativa*, 42(1), 131-146

DOI: https://doi.org/10.6018/rie.543991

Desarrollo de habilidades de escritura persuasiva a través de la argumentación científica utilizando un diseño de series temporales

Developing Persuasive Writing Skills Through Scientific Argumentation Using a Time-Series Design

Fayyaz Ahmad Faize^{1*}, Mubeen Akhtar y Maria Hamayun^{**}
*Departamento de Humanidades, Universidad COMSATS Islamabad (Pakistán)
**Oxford Bussines College (United Kingdom)

Resumen

Este estudio investiga el desarrollo de habilidades de escritura persuasiva en una muestra de 44 estudiantes de inglés de grado VIII de una escuela privada de Rawalpindi-Pakistán. Emplea un diseño cuasiexperimental de series temporales, realizando tres pruebas previas a intervalos diferentes, seguidas de cinco lecciones que integran la argumentación científica. Para explorar la eficacia de la intervención, también se han realizado tres post-tests a diferentes intervalos. El uso de este diseño con seis niveles de medida pretende mejorar la fiabilidad en la medición de las variables. Además, se ha desarrollado un protocolo de entrevista semiestructurada para explorar la experiencia de los estudiantes con la argumentación científica, sus puntos fuertes y sus retos. Los datos cuantitativos se han analizado mediante media, DE, prueba t y ANOVA, mientras que los cualitativos se han analizado temáticamente. Los resultados de la estadística inferencial revelan una mejora significativa en la escritura persuasiva de los estudiantes. Su implicación en la argumentación científica les ha permitido pensar críticamente, tomar una decisión informada y apoyarla con argumentos válidos. Los datos de las entrevistas ponen de manifiesto ciertos retos, así como formas de mejorar la argumentación científica y su integración en la enseñanza del inglés.

Palabras clave: argumentación; estudiantes de inglés; escritura persuasiva; diseño cuasi-experimental de series temporales.

¹ Correspondencia: Oxford Business College, Beaver House, 27-38 Hythe Bridge Street, Oxford OX1 2EP. orcid.org/0000-0002-7646-0316, drfayyaz@comsats.edu.pk fayyazaf@yahoo.com

Abstract

This study investigates the development of persuasive writing skills in a sample of 44 grade VIII English learners from a private school in Rawalpindi-Pakistan. It employs a quasi-experimental time-series design, carrying out three pre-tests at different intervals which are followed by five lessons integrating scientific argumentation. To explore the effectiveness of the intervention, three post-tests at different intervals have also been conducted. The use of this design with six levels of measurement is aimed at improving the reliability in measuring variables. Furthermore, a semi-structured interview protocol has been developed to explore the students' experience with scientific argumentation, its strengths, and challenges. Quantitative data has been analysed using mean, SD, t-test, and ANOVA, while qualitative data has been thematically analysed. Results from inferential statistics reveal a significant improvement in the students' persuasive writing. Their involvement in scientific argumentation has enabled them to think critically, make an informed decision, and support it with valid arguments. The interview data highlights certain challenges as well as ways of improving scientific argumentation and its integration into English language teaching.

Keywords: argumentation; English learners; persuasive writing; quasi-experimental time-series design

Introducción

Entre las distintas destrezas lingüísticas, la escritura ha recibido relativamente menos atención por parte de los investigadores (Hassan et al., 2017). Se trata de un proceso cognitivo y social (Bakry & Alsamadani, 2015), que convierte nuestro habla y pensamientos en forma gráfica (Indah & Hermini 2023). Es una habilidad esencial para los estudiantes de inglés como lengua extranjera (EFL). Sin embargo, los estudiantes luchan por mejorar sus habilidades de escritura en las escuelas, lugares de trabajo e incluso en su vida personal (Graham & Perin, 2007). Una posible razón de ello podría ser su dependencia de las otras tres destrezas lingüísticas: hablar, leer y escuchar (Klimova, 2014). Según Hadfield y Hadfield (2008), las habilidades de escritura de los estudiantes mejoran mediante una orientación adecuada, instrucciones claras y la práctica con diferentes formas de escritura. Este estudio se centra en la escritura persuasiva, una de las habilidades de escritura más desafiantes para los estudiantes de idiomas (Handayani, 2020).

La escritura persuasiva tiene como objetivo convencer al lector para que crea en un punto de vista específico (Nurtjahyo et al., 2019). También se denomina escritura argumentativa, que comprende afirmaciones con pruebas de apoyo. Un texto de escritura persuasiva bien escrito puede convencer al lector del punto de vista del escritor (Handayani 2020). Además, permitirá a los estudiantes "producir, evaluar y comprender el discurso ético, profesional y político" (Gill et al., 2022, p. 50), haciendo así que sus voces sean más articuladas y eficaces (Mahmood et al., 2021). Sin embargo, los estudiantes tienen dificultades para redactar una descripción convincente por varias razones.

Handayani (2020) descubrió que uno de los problemas de la escritura persuasiva es

la incapacidad de los alumnos para desarrollar un buen argumento. Los alumnos tienen dificultades para encontrar pruebas lógicas que respalden sus argumentos, lo que les hace sentirse aburridos y ansiosos durante la escritura persuasiva. Baghbadorani y Roohani (2014) concluyeron que los estudiantes tienen dificultades para ordenar sus pensamientos y apoyar sus puntos de vista en la escritura persuasiva. Su intervención de desarrollo de estrategias autorreguladas mejoró eficazmente la escritura persuasiva en estudiantes de inglés iraníes. Sin embargo, su muestra eran estudiantes universitarios que estaban más autorregulados y podían trabajar de forma independiente, a diferencia de los estudiantes de primaria de este estudio.

Klimova (2014) utilizó el enfoque orientado al producto y al proceso para mejorar las habilidades de escritura de los alumnos. El enfoque de producto presenta un texto modelo a los alumnos y les guía para que estudien su estructura, la organización de las ideas y las características lingüísticas. A continuación, los alumnos intentan producir un texto similar. En cambio, el enfoque basado en el proceso se centra en la generación de ideas mediante la lluvia de ideas, el debate en grupo y la práctica. El autor no encontró diferencias significativas entre ambos enfoques en el rendimiento de los alumnos en la escritura. Sin embargo, este hallazgo no puede generalizarse debido al pequeño tamaño de la muestra y al breve tiempo de intervención.

La investigación de Kaur (2015) sobre la exploración de los desafíos en la escritura de ensayos argumentativos encontró que los estudiantes tailandeses enfrentaron dificultades para escribir una declaración de tesis válida. La razón principal era la falta de familiaridad y práctica con este género. Encontraron que la enseñanza tradicional y la evaluación basada en la memoria eran responsables de la debilidad en la escritura argumentativa. Mahmood et al. (2021) también concluyeron un resultado similar para la debilidad de los estudiantes pakistaníes en la escritura persuasiva.

La escritura persuasiva en el contexto de la EFL también varía en función de la lengua materna de los alumnos. Bacha (2010) identificó que una de las razones de la debilidad de los estudiantes arabófonos en la escritura persuasiva era la diferencia estructural entre los estilos de escritura persuasiva en árabe y en inglés. En árabe, la afirmación suele ir al final y la refutación no siempre es necesaria. Bacha (2010) introdujo la escritura persuasiva entre los estudiantes arabófonos mediante la técnica de los "ensayos", que constaba de cinco pasos: construcción del contexto, modelado y deconstrucción de textos, construcción conjunta de textos, construcción independiente de textos y vinculación de textos relacionados. El método mejoró eficazmente la escritura persuasiva: sin embargo, no fue interactivo en lo que respecta a la participación de los estudiantes y se informó de frecuentes enfrentamientos durante la clase.

En un estudio reciente, Mahmood et al. (2021) analizaron 50 redacciones persuasivas de alumnos paquistaníes y llegaron a la conclusión de que los estudiantes de idiomas no estaban familiarizados con las características lingüísticas de la redacción persuasiva. Su análisis reveló que los ensayos persuasivos eran meros relatos descriptivos y carecían de argumentos convincentes. Una posible razón de esta debilidad podría atribuirse al modo tradicional de instrucción (Faize & Nawaz, 2020) y a la falta de conocimientos suficientes de la lengua inglesa, su estructura y su uso funcional (Sajid & Siddiqui, 2015).

En Pakistán, en los planes de estudio se suele hacer más hincapié en la lectura y la escritura que en la comprensión auditiva y la expresión oral (Faize, 2011). A pesar de ello,

los alumnos no dominan el inglés y tienen dificultades para la escritura persuasiva. La argumentación científica es una vía potencial para ayudar a los estudiantes a mejorar sus habilidades de escritura persuasiva canalizando simultáneamente los aspectos cognitivos, epistémicos y sociales de la escritura. El aspecto cognitivo ayuda a proporcionar una razón válida para la afirmación y evita la generalización sin fundamento. El epistémico aporta pruebas para respaldar las afirmaciones basadas en teorías y conocimientos científicos, mientras que el aspecto social se centra en la interacción mutua de los estudiantes y en el respeto de los puntos de vista opuestos (Duschl, 2008).

La argumentación científica puede entenderse como una estructura y un proceso dialógico (Mikeska y Lottero-Perdue, 2022). El aspecto estructural se refiere a la construcción de argumentos utilizando ciertos componentes clave. La estructura más común implica una afirmación, pruebas de apoyo y un contraargumento o una refutación (Jin & Kim, 2021; Faize & Akhtar, 2020). Una afirmación se refiere a la toma de decisiones a favor o en contra de un tema. Las pruebas apoyan una afirmación, mientras que una refutación aporta pruebas para rebatir la afirmación contraria. Una buena refutación convence al oponente para que revise la propia afirmación y acepte el argumento del otro (Toulmin, 1958). Sin embargo, construir una refutación no es sencillo; para los estudiantes es el componente más difícil a pesar de la práctica (Foong y Daniel, 2013; Osborne et al., 2004). Una refutación refleja habilidades de pensamiento de alto nivel (Chang y Chiu, 2008) y, por tanto, aumenta la calidad de un argumento (Erduran et al., 2004).

Por otra parte, el aspecto dialógico de la argumentación científica se refiere a apoyar el propio argumento mientras se critica, se debate y se escuchan los contraargumentos. Esto la convierte en una interacción lingüísticamente social (Wang, 2020) que mejora la comprensión conceptual de los estudiantes de la relación entre los datos y la afirmación y fomenta la discusión en grupo (Rohayati., Anshori, & Sastromiharjo, 2023). En este estudio, consideramos tanto los aspectos de estructura como de proceso de la argumentación científica para estudiar las habilidades de escritura persuasiva.

La argumentación científica es útil en la construcción de argumentos (Faize & Akhtar., 2020). Según Hewson y Ogunniyi (2011)cuando se enseñó a los alumnos mediante la argumentación científica en las escuelas sudafricanas, participaron activamente y con entusiasmo en las clases. Los alumnos aprendieron a respetar las diferencias de opinión, lo que les ayudó a generar nuevas ideas y conocimientos. Así, la participación en la argumentación científica ayudó a los alumnos a decidir sobre una cuestión y a respaldarla con pruebas.

La argumentación científica desarrolla el pensamiento crítico de los estudiantes (Faize, 2015) y les permite pensar como científicos (Passmore y Svoboda, 2012). Sin embargo, no se ha considerado su uso para mejorar las habilidades de escritura persuasiva. Esta investigación indaga en la posibilidad de utilizar la argumentación científica para mejorar las habilidades de escritura persuasiva de los estudiantes. Basándonos en este objetivo, nuestra hipótesis nula afirma que no hay efecto de la argumentación científica en las habilidades de escritura persuasiva de los estudiantes. Además, este estudio exploraría las reflexiones de los estudiantes sobre la argumentación científica, destacando sus puntos fuertes y los problemas encontrados durante la construcción de argumentos. El desarrollo de habilidades de escritura persuasiva mediante la argumentación científica puede servir de ayuda a los profesores de inglés. Los resultados de esta investigación pueden ayudar a

mejorar la enseñanza de la escritura persuasiva y fomentar el uso de la argumentación científica en la enseñanza de idiomas.

Para alcanzar los objetivos de la investigación, en este estudio conceptualizamos la argumentación científica como una estructura y un proceso social. Estructuralmente, utilizamos el Patrón de Argumentación por Competencia de Fundamentos (GC-AP), que considera un argumento consistente en una afirmación, fundamentos y refutación (detalle mencionado en la sección de Análisis de Datos). Como proceso, consideramos la argumentación científica como una actividad social en la que se crean oportunidades para que los estudiantes formen argumentos proporcionando explicaciones y criticando puntos de vista opuestos. Dicho proceso se relaciona con el constructivismo social de Vygotsky (1978), que afirma que toda función en el desarrollo del niño aparece en el nivel social y, posteriormente, en el nivel individual. Una vez que el niño pasa o experimenta la interacción social, el aprendizaje se produce a nivel individual, lo que conduce al desarrollo cognitivo. Basándose en esta teoría, la argumentación científica implica que los alumnos trabajen en grupos con diferentes actividades. El compañero con más conocimientos del grupo también sirve de andamiaje durante esta interacción mutua.

Metodología

Participantes

Participaron 24 alumnos de octavo curso de inglés obligatorio de un colegio privado de Rawalpindi (una gran ciudad de Pakistán). Las edades de los alumnos oscilaban entre los 12 y los 14 años (media de 13,6 años), con 14 chicas y 10 chicos. Según el registro escolar, todos los alumnos pertenecían a la clase media baja.

Diseño de la investigación

Esta investigación utilizó un diseño cuasiexperimental dentro de un sujeto que involucró a los mismos participantes en todas las condiciones, controlando así el problema de las variables del sujeto o los grupos no equivalentes. Sin embargo, para controlar la influencia de la historia, la maduración y la instrumentación, elegimos un diseño de series temporales que toma medidas repetidas antes y después de la intervención y ofrece un diseño de investigación robusto (Gravetter & Forzano, 2019). Una serie de prepruebas y pospruebas proporcionó más información sobre la tendencia de los datos antes y después de la intervención que una única medición pre y posprueba.

Instrumento de investigación

Utilizamos tres pruebas previas y tres pruebas posteriores para evaluar la calidad de las habilidades de escritura persuasiva de los alumnos. En cada prueba se pedía a los participantes que escribieran sobre un tema seleccionado por el profesor y relacionado con la escritura persuasiva. No había límite de palabras; sin embargo, el crédito se otorgaba en función de la calidad del argumento. Estos textos se revisaron y calificaron siguiendo

el modelo GC-AP (se detalla en la sección de análisis).

También realizamos una entrevista semiestructurada a diez estudiantes seleccionados al azar. Cada entrevista duró entre 10 y 15 minutos. La entrevista identificó la experiencia de los estudiantes con la argumentación científica, los retos en la construcción de argumentos y las formas de mejorar la argumentación científica.

Un grupo de expertos formado por dos doctores y dos especialistas en la materia (profesores que habían enseñado escritura persuasiva durante más de cinco años) validó ambos instrumentos (pruebas y entrevista semiestructurada), que luego se sometieron a una prueba piloto en una muestra más pequeña de alumnos de octavo curso de otro centro escolar. En ambos instrumentos se editaron algunos ítems en aras de la claridad lingüística. Para minimizar el sesgo de los investigadores en la calificación de los textos de escritura persuasiva, uno de los investigadores y un experto en la materia calificaron por separado todos los textos para comprobar la fiabilidad de la calificación. El coeficiente de fiabilidad entre las calificaciones del investigador y del experto en la materia fue de α = 0,85, p = 0,000, lo que resultó aceptable.

Análisis de datos

Para analizar y calificar los textos de escritura persuasiva de los estudiantes se utilizó el Patrón de Argumentación de Competencia en Fundamentos (GC-AP) de Foong y Daniel (2013). El GC-AP propone una forma sencilla de calificación mediante la búsqueda de tres componentes principales en un texto persuasivo: afirmación, fundamentos y refutación. La afirmación indica el punto de vista o la postura del alumno a favor o en contra de un tema. Los argumentos consistían en ejemplos, explicaciones, opiniones, hechos o pruebas que apoyaban la afirmación. Un argumento pobre contenía un solo ejemplo o elaboración, mientras que un argumento rico proporcionaba más de un ejemplo, justificación o explicación para defender una afirmación. Las refutaciones también se clasificaron en débiles y fuertes en función de su calidad y pertinencia. La Tabla 1 muestra los componentes y la puntuación asignada para medir la calidad de un texto persuasivo.

 Tabla 1

 Patrón de puntuación para analizar la calidad de los argumentos

Componente	Puntuación asignada
Sólo reclamación (1)	1
Reclamación (1) + Suelo en mal estado (1)	2
Demanda (1) + Terreno rico (2)	3
Alegación (1) + fundamento deficiente (1) + refutación débil (1)	3
Alegación (1) + motivo rico (2) + refutación débil (1)	4
Alegación (1) + fundamento deficiente (1) + refutación contundente (2)	4
Alegación (1) + fundamento sólido (2) + refutación sólida (2)	5

El siguiente ejemplo ilustra el patrón de puntuación en un tema persuasivo: "La necesidad del uniforme escolar" del texto de un alumno.

Los uniformes escolares deberían ser obligatorios para todos los alumnos (reivindicación: puntuación 1). Es más cómodo para los alumnos prepararse para ir al colegio llevando el mismo uniforme (argumento: puntuación 1). Mucha gente piensa que el uniforme quita libertad a los alumnos, pero sus beneficios son más ya que les hace responsables, reconocibles y muestra igualdad (refutación fuerte, puntuación 2).

La redacción anterior obtuvo una puntuación de cuatro según los criterios mencionados en la Tabla 1. Se utilizó IBM SPSS ver. 25 (Reg.) para analizar los datos cuantitativos y el análisis temático para los datos de las entrevistas. El análisis temático es un método para "identificar, analizar e informar sobre patrones (temas) dentro de los datos". Utilizamos las directrices de Creswell y Poth (2016) para extraer temas mediante la transcripción de datos, la codificación y, a continuación, la evolución de los temas.

Procedimiento

Los investigadores administraron tres pruebas previas antes de la intervención. Cada prueba previa se realizó con un intervalo de dos días. Durante el intervalo, los alumnos recibieron clases de otros contenidos para cubrir el temario. Cada pre-test consistió en un tema para evaluar las habilidades de escritura persuasiva antes de la intervención.

La fase de intervención implicó a los alumnos en la argumentación científica a través de diferentes actividades (mencionadas en la sección siguiente). La argumentación científica implicó a los alumnos en la construcción del conocimiento mediante la participación activa, la toma de decisiones y el pensamiento crítico. Seguimos el constructivismo social de Vygotsky, en el que el profesor facilita el flujo de pensamientos y los alumnos son los participantes activos. El profesor fue uno de los autores que dirigió todas las actividades. La fase de intervención abarcó cinco planes de clase de 30 minutos cada uno. Para minimizar el sesgo del profesor, los planes de clase se planificaron sistemáticamente y abarcaban diferentes temas y actividades de argumentación científica. Las actividades se basaron en la teoría del desarrollo social de Vygotsky (1978), según la cual el pleno desarrollo cognitivo de un individuo requiere interacción social. Los alumnos trabajaron en pequeños grupos de dos a cuatro, y el profesor les guiaba como el otro más informado (MKO). Por último, los alumnos practicaron individualmente sobre los temas seleccionados.

La fase de intervención abarcó cinco actividades de argumentación científica. Cada actividad se realizó en una lección independiente y fue denominada por los investigadores según la naturaleza de la actividad. Reservamos cinco lecciones para realizar estas actividades relacionadas con la argumentación científica. A continuación, se realizaron tres pospruebas con un intervalo de al menos dos días. Cada post-test consistió en un tema para evaluar las habilidades de escritura persuasiva de los estudiantes. A continuación se ofrece la representación simbólica del diseño cuasi-experimental.

T1	T2	Т3	Intervención	T4	T5	T6

Donde T1, T2 y T3 eran prepruebas y T4, T5 y T6 eran pospruebas.

Lista de actividades para desarrollar la capacidad de argumentación

Realizamos las siguientes actividades durante la fase de intervención para familiarizar a los alumnos con la argumentación científica. Cada actividad se realizó en una lección independiente.

A. Diferencia entre hechos y opiniones

Durante esta lección, se enseñó a los alumnos a distinguir entre hechos y opiniones. Les dimos trozos recortados de distintos periódicos ingleses y les pedimos que identificaran los párrafos relacionados con hechos y opiniones. Se animó a los alumnos a justificar su decisión. Esta actividad se realizó en grupos de dos a cuatro personas bajo la dirección del profesor.

B. Investigación guiada

Los alumnos recibieron un breve artículo para que identificaran en él los componentes de la argumentación científica. Esta actividad ayudó a los alumnos a comprender los componentes necesarios y la estructura de la argumentación científica. Posteriormente, el profesor organizó un debate en clase para aclarar el concepto a los alumnos que tenían dificultades con los componentes.

C. Barras de combate

Se pidió a los alumnos que eligieran un chocolate de entre una variedad que se les presentó. Los que elegían los mismos chocolates se agrupaban. Se pidió a cada grupo que escribiera un párrafo justificando su elección, como el precio del chocolate, el sabor, los reclamos publicitarios, la facilidad de consumo, las razones para no elegir los otros chocolates, etc. El párrafo incluía una afirmación, pruebas de apoyo y contraargumentos.

D. El profesor como escritor modelo

El profesor actúa como escritor modelo para ayudar a los alumnos a redactar un pasaje argumentativo. El profesor escribió el tema en la pizarra e hizo columnas separadas para la afirmación, los fundamentos y la refutación. Los alumnos ayudaron al profesor a escribir una afirmación, una prueba de apoyo y una refutación. El profesor guía a los alumnos para que ordenen sus ideas y pensamientos. Los alumnos recibieron instrucciones adecuadas para escribir una redacción argumentativa.

E. Cuatro debates en las esquinas

El profesor escribió una afirmación en la pizarra y luego pegó cuatro trozos de papel en cuatro esquinas del aula con las etiquetas algo de acuerdo, muy de acuerdo, muy en desacuerdo y algo en desacuerdo. Se pidió a los alumnos que se colocaran en cada esquina según su grado de acuerdo con la afirmación. Se organizó un debate entre los alumnos. Los alumnos que estaban muy de acuerdo o muy en desacuerdo intentaron convencer a los que estaban algo de acuerdo o algo en desacuerdo. El debate terminó con los alumnos

situados en las dos esquinas de muy de acuerdo o muy en desacuerdo. Sin embargo, algunos estudiantes mantuvieron su posición original.

Tras las actividades en grupo, los alumnos realizaban tareas individuales relacionadas con la escritura persuasiva. Se supervisó y evaluó el rendimiento individual de los alumnos en la escritura persuasiva.

Resultados de los datos cuantitativos

Los investigadores realizaron tres pruebas previas a intervalos diferentes para comprobar la coherencia del rendimiento de los alumnos. A continuación se realizó la fase de intervención y tres pruebas posteriores a intervalos diferentes. La duración de cada intervalo fue de dos días. La tabla 2 muestra los resultados de la estadística descriptiva con las puntuaciones medias, la desviación típica y el valor F. Las puntuaciones medias fueron más bajas en las tres pruebas. Las puntuaciones medias fueron más bajas en las tres pruebas previas que en las tres posteriores. Esto implicaba un bajo rendimiento en las pruebas previas, que mejoró en las posteriores. Nuestro siguiente punto de interés era comparar las puntuaciones medias de los tres pre-tests para averiguar si las medias diferían significativamente o no.

Tabla 2Estadísticas descriptivas de las pruebas previas y posteriores con valor F

	Media	SD	Valor F	
Puntuación Pre-Test 1	2.96	.638		•
Puntuación Pre-Test 2	2.61	.783	2.94	
Puntuación Pre-Test 3	3.04	.706		13.66*
Puntuación Post-Test 1	3.78	.795		
Puntuación Post-Test 2	3.91	.900	.565	
Puntuación Post-Test 3	4.00	.798		

^{*}Significativo al .0001

Un ANOVA de medidas repetidas con una corrección de Greenhouse-Geisser no indicó diferencias significativas en las medias de las tres pruebas previas: F(1,51;33,18) = 2,94; p = 0,08. Del mismo modo, no encontramos diferencias significativas en las medias de las puntuaciones de las tres pruebas posteriores utilizando un ANOVA de medidas repetidas; F(1,51;33,18) = 0,565; p = 0,54. Estos dos resultados implican que los estudiantes no obtuvieron resultados significativos en las tres pruebas previas. Estos dos resultados implican que los alumnos obtuvieron resultados sistemáticamente más bajos en las pruebas previas y significativamente más altos en las posteriores.

Para medir el impacto de nuestro programa de intervención, comparamos las medias de las tres pruebas previas con las tres pruebas posteriores. El ANOVA de medidas repetidas determinó una diferencia significativa entre las medias de las tres pruebas previas y las tres posteriores; F (3,41, 75,01) = 13,66, p = 0,000.

Como había tres prepruebas y tres pospruebas, utilizamos la prueba Post hoc para determinar cuáles de las medias diferían significativamente. La Tabla 3 muestra la

comparación por pares de las seis pruebas (1,2,3 representa las tres pruebas previas, y 4,5,6 las tres pruebas posteriores, respectivamente).

 Tabla 3

 Comparación por pares de las medias de todas las pruebas

(I) factor1	(J) factor1	Diferencia media (I-J)	Sig.
1	2	.348	.119
	3	087	.492
	4	82 6*	.001
	5	957 *	.001
	6	-1.043 *	.000
2	4	-1.174*	.000
	5	-1.304 *	.000
	6	-1.391 *	.000
3	4	7 39*	.004
	5	 870*	.002
	6	957 *	.001
4	5	130	.601
	6	217	.328
5	6	087	.539

^{*}Significativo al 0,01

La comparación de las medias de dos prepruebas cualesquiera mediante la prueba Post hoc no reveló diferencias significativas. Lo mismo ocurrió con las pruebas posteriores. Sin embargo, se observaron diferencias significativas cuando se comparó la puntuación media de cualquiera de los pre-tests con cualquiera de los post-tests. Así, se encontraron diferencias significativas entre el pre-test 1 y los tres post-tests 4, 5 y 6. Del mismo modo, se registraron diferencias significativas entre el pre-test 2 y los tres post-tests; y entre el pre-test 3 y los tres post-tests.

Para analizar el rendimiento de los alumnos en la escritura persuasiva a lo largo del tiempo, nos remitimos a la Figura 1, que muestra el diseño de las series temporales.

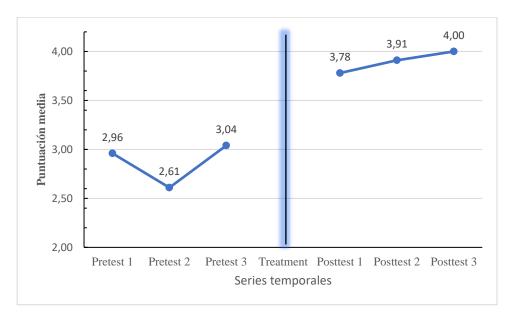


Figura 1 Puntuación media de los participantes en las pruebas previas y posteriores en una serie temporal

El gráfico muestra las líneas de tendencia que representan las puntuaciones medias de las tres pruebas previas y posteriores. La línea vertical representa el momento en que se administró el tratamiento. La línea de tendencia muestra medias más altas para los post-tests en comparación con los pre-tests. La puntuación media disminuyó en la segunda preprueba y luego aumentó, pero esta fluctuación no fue significativa. Las mediciones de las tres pospruebas proporcionaron pruebas sólidas del efecto de la intervención y eliminaron la posibilidad de que se produjera un incremento por azar si se realizaba una sola medición o una sola posprueba.

Resultados de los datos cualitativos

El programa de entrevistas con diez estudiantes seleccionados al azar arrojó los siguientes datos cualitativos. Se utilizaron seudónimos para garantizar la confidencialidad de los datos.

Reflexión de los alumnos

Se pidió a los estudiantes que reflexionaran sobre su experiencia con la argumentación científica. Todos los estudiantes expresaron que la participación en la argumentación científica mejoró su concepto y comprensión de la escritura persuasiva.

Aly: "Mi concepto ha mejorado gracias a este compromiso, y ahora puedo escribir buenas redacciones persuasivas".

Hania: "He aprendido a hacer alegaciones adecuadas a favor o en contra de un tema.

También he aprendido a pensar desde el punto de vista de los demás y a redactar contraargumentos."

Abdullah: "Aprendí que, en primer lugar, tomamos una decisión que se llama reivindicación.... también tenemos que atender a las opiniones contrarias, y si alguien dice lo contrario que yo, también tenemos que responder a eso".

Seis de cada diez estudiantes mencionaron que entendían los tres componentes de la argumentación científica. Estos estudiantes expresaron que la participación en la argumentación científica mejoró su comprensión y les ayudó a tomar decisiones.

Retos de la argumentación científica

Cuando se les preguntó por los retos que planteaba la argumentación científica, los alumnos señalaron varios problemas. El principal problema era redactar una buena refutación/contraargumentación. Los alumnos también mencionaron la dificultad de hacer una afirmación en la escritura argumentativa, ya que implicaba pensamiento crítico. Por último, algunos alumnos se quejaron de la falta de conocimientos previos para construir un argumento.

Gul: "Creo que la redacción de pruebas fue difícil porque no lo sé todo".

Anjum: "Hacer reclamaciones me resultó un poco difícil".

Naveed: "Creo que lo difícil era contraargumentar".

Sugerencias de mejora

Los alumnos sugirieron que los profesores deberían implicar a los alumnos en actividades de clase diversas y emocionantes para mejorar su escritura persuasiva. Los alumnos señalaron que a veces la construcción de argumentos resulta muy difícil, por lo que los profesores deberían proporcionar orientación continua durante las sesiones argumentativas. Algunos alumnos sugirieron que los profesores dieran tareas de lectura antes de cualquier sesión argumentativa para que los alumnos pudieran recopilar información de fondo sobre el tema.

Aria: "Creo que los alumnos deberían hablar más a menudo de temas sociales. Deberán leer mucho y buscar en Internet para mejorar sus conocimientos previos".

Algunos estudiantes sugirieron que otros profesores utilizaran también la argumentación científica durante la enseñanza en clase. Cuanto más practiquen la argumentación científica, mejor la aprenderán y aplicarán en otras asignaturas, especialmente en ciencias.

Fátima: "Quiero que mi profesor de ciencias nos enseñe ciencia a través de la argumentación científica".

Discusión

El estudio pretendía explorar si se puede mejorar la escritura persuasiva de los alumnos mediante la argumentación científica. Para ello, se evaluaron las habilidades de escritura persuasiva de los alumnos mediante tres pruebas previas. Los alumnos obtuvieron resultados sistemáticamente inferiores en las tres pruebas previas. Se observó

que los alumnos tenían dificultades para redactar un argumento convincente. La mayoría de los textos carecían de pruebas adecuadas para apoyar el argumento. Mahmood et al. (2021) también descubrieron que los estudiantes paquistaníes tenían dificultades con la escritura persuasiva. Los alumnos escriben relatos descriptivos en la escritura persuasiva y, por tanto, carecen de persuasión. Una razón de esta debilidad podría ser la falta de práctica con la escritura persuasiva. Kaur (2015) también informó de la debilidad de los estudiantes en la escritura persuasiva debido a la falta de práctica con este género.

La calidad de la escritura persuasiva mejoró tras la fase de intervención. Los datos del diseño de series temporales eliminaron el efecto de la práctica/maduración, ya que no encontramos diferencias significativas en las puntuaciones de los alumnos en las prepruebas 2ª y 3ª. La puntuación media aumentó considerablemente después del plan de intervención y se mantuvo más alta, lo que demuestra que la mejora en las pruebas posteriores no se debió al azar ni a la práctica. Estos datos nos llevaron a rechazar nuestra hipótesis nula y establecer la eficacia de la argumentación científica para mejorar las habilidades de escritura persuasiva. Este hallazgo es apoyado por Hassan et al. (2017). Royati et al. (2023) también encontraron una mejora en la calidad de la argumentación y las creencias epistémicas de los estudiantes cuando fueron guiados a través de la argumentación científica. La eficacia de la argumentación científica en la construcción de argumentos también fue respaldada por Faize y Akhtar (2020). La argumentación científica se centra en el razonamiento claro y prepara a los estudiantes para el mundo real más allá de las paredes de la escuela.

Las entrevistas ayudaron a explorar la experiencia de los estudiantes con la argumentación científica, los retos encontrados en la construcción de argumentos y las formas de mejorar la argumentación científica. Los estudiantes valoraron la argumentación científica como un proceso de aprendizaje interactivo. Los estudiantes informaron de que la argumentación científica les ayudó en la escritura persuasiva al centrarse en los componentes estructurales como la afirmación, el fundamento y el contraargumento. Esto hace que les resulte fácil y emocionante construir un argumento sólido. Faize (2022) también descubrió que los estudiantes desarrollan una comprensión y una apreciación más profundas del conocimiento a través de la argumentación científica. Sin embargo, construir un argumento no siempre es una tarea fácil. Los estudiantes identificaron varios retos en la argumentación científica. En primer lugar, la falta de conocimientos previos sobre un tema. Sin unos conocimientos previos adecuados, no se puede hacer una afirmación válida y apoyarla. Esto estaba justificado, ya que nuestra muestra estaba formada por estudiantes de nivel elemental, y muchos carecen de conocimientos suficientes en este nivel. Esto está en consonancia con Qin y Karabacak (2010) porque una afirmación se acepta cuando está respaldada por datos de apoyo; de lo contrario, se considerará solo una opinión. Ho et al. (2019) informaron de resultados similares en estudiantes taiwaneses de grado IV durante la construcción de argumentos. La importancia del conocimiento previo en la construcción de argumentos también es reconocida por Grooms et al. (2018). Destacaron una relación positiva entre la familiaridad con los conceptos y la calidad de los argumentos. En este sentido, dar material de lectura relevante a los estudiantes como tarea para casa puede ayudar a desarrollar una base mínima de conocimientos para la argumentación científica (Faize et al., 2018).

Además, los alumnos encontraron dificultades a la hora de redactar una refutación. Esto era evidente en los textos persuasivos de los estudiantes, ya que muy pocos podían escribir refutaciones sólidas. Qin y Karabacak (2010) encontraron datos de refutación con la frecuencia más baja en la escritura argumentativa de estudiantes chinos. Lammers et al. (2019) también informaron de un problema similar con estudiantes universitarios. La dificultad con la construcción de refutaciones requiere el desarrollo de enfoques de instrucción para capacitar a los futuros profesores en argumentación científica (McNeill y Krajcik, 2012).

Al comentar cómo mejorar la argumentación científica, los alumnos sugirieron que los profesores la utilizaran con frecuencia en clase. Algunos estudiantes sugirieron que otros profesores también deberían utilizarla, especialmente los de ciencias. Los estudiantes de nuestro estudio no sabían que la argumentación científica se utilizaba principalmente para enseñar asignaturas de ciencias y que su uso en la escritura persuasiva era para ampliar su uso en la enseñanza de idiomas. Foong y Daniel (2013) y Faize (2015) también apoyaron la transferencia de habilidades de argumentación científica en otras asignaturas. Existe una necesidad imperiosa de educar y formar a los profesores de idiomas con estrategias didácticas eficaces para enseñar escritura argumentativa a sus alumnos (Kaur, 2015). En este contexto, las estrategias de enseñanza basadas en la argumentación deben enseñarse a los profesores para su desarrollo profesional (Loucks-Horsley et al., 2009).

Limitaciones

Sugerimos algunas precauciones en cuanto a la generalizabilidad de las conclusiones de este estudio. En primer lugar, el pequeño tamaño de la muestra de un colegio privado limita su aplicabilidad en un contexto más amplio. En segundo lugar, nos centramos en los componentes mencionados en los escritos persuasivos de los alumnos e ignoramos el dominio de la lengua inglesa en cuanto a gramática y sintaxis a la hora de calificar los guiones. En tercer lugar, este estudio fue cuasiexperimental con un solo grupo. Sugerimos que en futuros estudios se incluya un grupo de control en el diseño de series temporales para lograr una mayor credibilidad. En cuarto lugar, este estudio se centró en las destrezas escritas de los alumnos e ignoró sus destrezas verbales. A menudo, la argumentación verbal es compleja y de mejor calidad que la argumentación escrita. Futuros estudios podrían considerar también la argumentación verbal junto con la modalidad escrita y su interrelación.

Conclusión

El objetivo de este estudio era mejorar las habilidades de escritura persuasiva de los alumnos de inglés de grado VIII utilizando la argumentación científica. Los resultados de tres pruebas previas mostraron que los alumnos tenían un bajo rendimiento en escritura persuasiva. A continuación, la muestra participó en diferentes actividades relacionadas con la argumentación científica, seguidas de tres pruebas posteriores. Los investigadores hallaron diferencias significativas en las puntuaciones de los alumnos antes y después de las pruebas, lo que indicaba la eficacia de la argumentación científica. Las actividades de

intervención orientaron a los alumnos sobre la estructura de un buen argumento. Los alumnos aprendieron a hacer una afirmación y a justificarla con argumentos válidos. Además, las actividades de intervención resultaron más atractivas e interactivas. A los alumnos les gustaron las actividades de intervención y sugirieron que otros profesores también las utilizaran. Sin embargo, los alumnos también identificaron algunos problemas a la hora de construir argumentos, como la redacción de una refutación sólida y la falta de conocimientos previos para apoyar la propia afirmación. Los alumnos sugirieron que sus profesores les asignaran lecturas periódicas para mejorar sus conocimientos previos. Los comentarios de los estudiantes sobre la argumentación científica proporcionaron información útil sobre las dificultades de intervención y ayudarían a los profesores de idiomas, pedagogos e investigadores a integrar la argumentación científica en la enseñanza de idiomas y su aplicación regular en el desarrollo de las habilidades de escritura persuasiva de los estudiantes.

Referencias

- Bacha, N. N. (2010). Teaching the academic argument in a university EFL environment. *Journal of English for Academic Purposes*, 9(3), 229-241. https://doi.org/10.1016/j.jeap.2010.05.001
- Baghbadorani, E. A., & Roohani, A. (2014). The impact of strategy-based instruction on L2 learners' persuasive writing. *Procedia-Social and Behavioral Sciences*, 98, 235-241. https://doi.org/10.1016/j.sbspro.2014.03.412
- Bakry, M. S., & Alsamadani, H. A. (2015). Improving the persuasive essay writing of students of Arabic as a foreign language (AFL): Effects of self-regulated strategy development. *Procedia-Social and Behavioral Sciences*, 182, 89-97. https://doi.org/10.1016/j.sbspro.2015.04.742
- Chang, S., & Chiu, M. (2008). Lakatos' scientific research programmes as a framework for analysing informal argumentation about socio-scientific issues. *International Journal of Science Education*, 30(13), 1753-1773. https://doi.org/10.1080/09500690701534582
- Creswell, J. W., y Poth, C. N. (2016). *Indagación cualitativa y diseño de investigación: Elegir entre cinco enfoques*. Publicaciones Sage.
- Duschl, R. (2008). La educación científica en armonía tripartita: Equilibrio entre los objetivos conceptuales, epistémicos y de aprendizaje social. *Review of Research in Education*, 32(1), 268-291. https://doi.org/10.3102/0091732X07309371
- Erduran, S., Simon, S. y Osborne, J. (2004). TAPping into argumentation: Developments in the application of Toulmin's Argument Pattern for studying science discourse. *Science Education*, 88(6), 915-933. https://doi.org/10.1002/sce.20012
- Faize, F.A. & Akhtar, M. (2020). Addressing Environmental Knowledge and Attitude in Undergraduate Students Through Scientific Argumentation. *Journal of Cleaner Production*, 252, 1-8. https://doi.org/10.1016/j.jclepro.2019.119928
- Faize, F.A. & Nawaz, M. (2020). Evaluación y mejora de la satisfacción de los estudiantes en el aprendizaje en línea durante COVID-19. *Open Praxis*, 12(4). 495-507. https://dx.doi.org/10.5944/openpraxis.12.4.1153

- Faize, F.A. (2011). *Problem and prospect of science education at secondary level in Pakistan* (Tesis doctoral inédita). Universidad Islámica Internacional, Islamabad: Pakistán.
- Faize, F.A. (2015). Introducing Argumentation at Higher Education in Pakistan- A New Paradigm of Teaching Ethic based Topics. *FWU Journal of Social Sciences*, 9(1), 8-13.http://sbbwu.edu.pk/journal/pages/FWUJournal,summer%202015%20Vol.9,No.1.php
- Faize, F.A. (2022). Assessing Science Teachers' Understanding About the Nature of Scientific Inquiry and its Reflection in Students' Responses Using the VASI Questionnaire. *International Journal of Science Education*, 44(14), 2224-2240.
- https://doi.org/10.1080/09500693.2022.2116959
- Faize, F.A., Hussain, W. & Nisar, F. (2018). Una revisión crítica de la argumentación científica en la enseñanza de las ciencias. *EURASIA Journal of Mathematics, Science and Technology Education*, 14(1), 475-483. https://doi.org/10.12973/ejmste/80353
- Foong, C., y Daniel, E. (2013). Students' argumentation skills across two socio-scientific issues in a Confucian classroom: ¿Es posible la transferencia? *International Journal of Science Education*, 35(14), 2331-2355. https://doi.org/10.1080/09500693.2012.697209
- Gill, A. A., Kausar, G., & Haider, S. (2022). A corpus-based analysis of interpersonal persuasive writing skills of Pakistani English language learners. *Pakistan Journal of Social Research*, 4(2), 50-59.
- Graham, S., y Perin, D. (2007). Writing next-effective strategies to improve writing of adolescents in middle and high schools-A report to Carnegie Corporation of New York. Alianza para una Educación Excelente. http://dl.ueb.edu.vn/handle/1247/9990
- Gravetter, F. J., & Forzano, L.-A. B. (2019). Métodos de investigación para las ciencias del comportamiento (sexta ed). Cengage Learning.
- Grooms, J., Sampson, V., & Enderle, P. (2018). Cómo la familiaridad conceptual y la experiencia con la argumentación científica se relacionan con la forma en que los grupos participan en un episodio de argumentación. *Journal of Research in Science Teaching*, 55(9), 1264-1286. https://doi.org/10.1002/tea.21451
- Hadfield, J., & Hadfield, C. (2008). *Introducción a la enseñanza del inglés*. Oxford University Press.
- Handayani, F. (2020). An Analysis of Students' Attitude toward the Use of Google Documents in Writing Persuasive Essay at Second Year of English Department UMMY Solok on 2019/2020 Academic Year. Universidad Mahaputra Muhammad Yamin Solok.
- Hassan, S. A., Movassagh, H., & Radi Arbabi, H. (2017). La interrelación entre el pensamiento crítico, la escritura de un ensayo argumentativo en una L2 y sus subhabilidades. *The Language Learning Journal*, 45(4), 419-433. https://doi.org/10.1080/09571736.2017.1320420

- Hewson, M. G., & Ogunniyi, M. B. (2011). Argumentación-enseñanza como método para introducir el conocimiento indígena en las aulas de ciencias: Oportunidades y desafíos. *Cultural Studies of Science Education*, *6*(3), 679-692. https://doi.org/10.1007/s11422-010-9303-5
- Ho, H.-Y., Chang, T.-L., Lee, T.-N., Chou, C.-C., Hsiao, S.-H., Chen, Y.-H., & Lu, Y.-L. (2019). Los estudiantes por encima y por debajo de la media piensan de manera diferente: Sus patrones de argumentación científica. *Thinking Skills and Creativity*, 34, 100607. https://doi.org/10.1016/j.tsc.2019.100607
- Indah, O. D., & Hermini, H. (2023). Análisis de la capacidad de redacción de párrafos persuasivos de los estudiantes universitarios. IDEAS: *Journal on English Language Teaching and Learning, Linguistics and Literature,* 10(2), 1778-1786. https://doi.org/10.24256/ideas.v10i2.3243
- Jin, Q., & Kim, M. (2021). Supporting elementary students' scientific argumentation with argument-focused metacognitive scaffolds (AMS). *International Journal of Science Education*, 43(12), 1984-2006. https://doi.org/10.1080/09500693.2016.1218567
- Kaur, S. (2015). Teaching strategies used by Thai EFL lecturers to teach argumentative writing. *Procedia-Social and Behavioral Sciences*, 208, 143-156.
- Klimova, B. F. (2014). Enfoques para la enseñanza de habilidades de escritura. *Procedia-Ciencias Sociales y del Comportamiento*, 112, 147-151.
- Lammers, A., Goedhart, M. J., & Avraamidou, L. (2019). Lectura y síntesis de textos científicos utilizando un modelo de argumentación científica por estudiantes de biología de pregrado. *International Journal of Science Education*, 41(16), 2323-2346. https://doi.org/10.1080/09500693.2019.1675197
- Loucks-Horsley, S., Stiles, K. E., Mundry, S., Love, N., & Hewson, P. W. (2009). *Designing professional development for teachers of science and mathematics*. Corwin press.
- Mahmood, M. A., Haider, S., & Asghar, S. A. (2021). A Corpus-based Analysis of Persuasive Linguistic Choices of Pakistani Argumentative Essay Writing. *Harf-O-Sukhan*, 5(1), 28-46.
- McNeill, K. L., y Krajcik, J. (2012). Book study facilitator's guide: Apoyando a los estudiantes de grado 5-8 en la construcción de explicaciones en la ciencia: The claim, evidence and reasoning framework for talk and writing. Pearson Allyn & Bacon.
- Mikeska, J. N., & Lottero-Perdue, P. S. (2022). How preservice and in-service elementary teachers engage student avatars in scientific argumentation within a simulated classroom environment. *Science Education*, 106(4), 980-1009. https://doi.org/10.1002/sce.21726
- Nurtjahyo, S. N., Drajati, N. A., & Sumardi, S. (2019). Estrategia G.R.A.S.P.S: Disminuyendo las dificultades de los aprendices en la escritura de textos persuasivos. *International Journal of Language Teaching and Education*, 3(2), 158-172. https://doi.org/10.22437/ijolte.v3i2.7391

- Osborne, J., Erduran, S. y Simon, S. (2004). Enhancing the quality of argumentation in school science. *Journal of Research in Science Teaching*, 41(10), 994-1020. https://doi.org/10.1002/tea.20035
- Passmore, C., y Svoboda, J. (2012). Explorando oportunidades para la argumentación en las aulas de modelización. *Revista Internacional de Educación Científica*, 34(10), 1535-1554.
- Qin, J., & Karabacak, E. (2010). The analysis of Toulmin elements in Chinese EFL university argumentative writing. *System*, *38*(3), 444-456. https://doi.org/10.1016/j.system.2010.06.012
- Rohayati, S., Anshori, D., & Sastromiharjo, A. (2023). Effectiveness of epistemic beliefs and scientific argument to improve learning process quality. *International Journal of Instruction*, 16(2), 493-510.
- Sajid, M. K. M., & Siddiqui, J. A. (2015). Falta de habilidades de escritura académica en lengua inglesa a nivel de educación superior en Pakistán: Causas, efectos y remedios evaluación y mejora de la satisfacción de los estudiantes. *Revista Internacional de Lengua y Lingüística*, 2(4), 174-186.
- Toulmin, S. (1958). The uses of argument. Cambridge University Press.
- Vygotsky, L. (1978). La mente en la sociedad: El desarrollo del proceso psicológico superior. Harvard University Press.
- Wang, J. (2020). Scrutinising the positions of students and teacher engaged in argumentation in a high school physics classroom. *International Journal of Science Education*, 42(1), 25-49. https://doi.org/10.1080/09500693.2019.1700315

Traducido con PeepL

Fecha de recepción: 23 de octubre de 2022. Fecha de revisión: 15 de diciembre de 2022. Fecha de aceptación: 6 de septiembre de 2023.