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ABSTRACT

Easton and Sommers (ES) (2003) document the existence of an overwhelming influence of
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earnings, losses....) follow distributions that are very strong skewed, that is, distributions
with a single, long tail. We argue that the scale effect is related to the presence of this large
tail. When we apply a logarithmic transformation (as recommended by the literature in the
case of highly skewed distributions, tending to restore normality), the ‘scale effect’
disappears.
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RESUMEN

Easton y Sommers (ES) (2003) demuestran que las observaciones de mayor tamaño
(empresas grandes) sesgan, de manera recurrente, los resultados de las regresiones precio-
magnitudes contables, para una muestra de datos norteamericanos. Akbar y Stark (2003)
hallan los mismos resultados en el mercado del Reino Unido. ES (2003) argumentan que
este efecto se debe a una relación no lineal entre las variables del estudio. Sin embargo, esa
es sólo una posibilidad. Nosotros defendemos que el efecto escala que encuentran ES (2003)
es un efecto puramente econométrico. Las variables comúnmente utilizadas en la
investigación contable orientada hacia el mercados de capitales (por ejemplo, precio, fondos
propios, beneficios, etc.) siguen distribuciones fuertemente asimétricas, esto es,
distribuciones con una única cola muy alargada. A nuestro juicio, el efecto escala está
relacionado con esta característica econométrica. Una vez aplicada una transformación
logarítmica (tal y como recomienda la literatura en el caso de distribuciones asimétricas
para restablecer normalidad), el efecto escala desaparece.

PALABRAS CLAVE: Efecto-escala, Regresiones con niveles de precios, Distribución
lognormal, Transformación logarítmica.
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INTRODUCTION

Easton and Sommers (2003) state:

“The influence of the largest observations, the scale effect, is not just heterocedasticity.

Increasing variance of the regression residual with increases in scale (that is,

heteroscedasticity) would be manifested in higher absolute values of studentized residuals for

larger firms. But, if the relation between the variables for larger firms differs from the relation

for smaller firms (that is, there is non-linearity in the data related to scale), we would also

see groups tending to ‘pull’ the regression plane more in one direction than the other”.

On the other hand, Abbar and Stark (2003), in their discussion of Easton and Sommers
(2003), posit that:

“If this (the scale effect) is caused by non-linearities in the relationship between market value

and the accounting variables, then this, in turn, raises an interesting question. Is it

fundamentally scale which is driving non-linearities? If so, why? If not, what is scale

capturing?”

Easton and Sommers (ES) (2003) document the existence of an overwhelming influence of large
firms in ‘price-levels’ regressions on US data (as do Akbar and Stark (2003) on UK data). They
refer to this overwhelming influence as the ‘scale effect’. ES argue that the scale effect is caused
by non-linearities in the relationship between market value and the accounting variables. But
non-linearities are only one possibility. We posit that the scale effect documented by ES is a
pure econometric phenomenon. Typical variables used in Market-based Accounting Research
(i.e. market value, book value, total assets, positive earnings, losses....) follow distributions that
are very strongly skewed, that is, distributions with a single, long tail. We argue that the scale
effect is related to the presence of this long tail. When we apply a logarithmic transformation
(as recommended by the literature in the case of highly skewed distributions, tending to restore
normality), the ‘scale effect’ disappears.1

As in Barth and Kallapur (1996) and Easton and Sommers (2003), this study also focuses on
scale. But our interpretation of scale is quite different from both.  Nor a correlated omitted
variable nor the idea that market capitalization is scale -with the underlying assumption that
relation between variables for larger firms differs from the relation for smaller firms. As posted,
we simply consider the scale effect to be an econometric phenomenon.

“Price-Levels” Regressions: “Scale-Effect” or “Distribution Effect”?

1

(1) Previous research has well documented a different relationship between price and earnings depending on whether
the latter is negative or positive (Hayn, 1995; Burgstahler & Dichev, 1997; Collins et al, 1997; Collins et al. 1999; Joos
& Plesko, 2005; among others). So, if we are interested in testing the value relevance of earnings we must distinguish
between loss and profit firms. Since we have to isolate loss firms, we can take absolute values of losses, run regressions
applying the logarithmic transformation and then multiply the coefficient estimate by minus one to obtain the right
coefficient.
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As Easton and Sommers (2003) demonstrated, once they deflate by market capitalization via
a weighted least squares regression, the scale effect is removed. Nevertheless, this
methodology could lead to misleading results. As all observations are weighted with a weight
equal to the inverse of the square of market capitalization, large firms will received very low
weight in comparison to small firms. We are also losing information. Results will be driven
by the set of small firms. Applying data transformation, we can still use the classical least
squares specification. Also, under the classical framework, all observations are equally
weighted so no information is wasted. Furthermore, as long as we are interested in applying
robust estimation techniques (based in some kind of weighted least regression), the
possibility of using weights remains available.

Regarding the interpretation of coefficients estimates when a logarithmic transformation is applied,
we rely on the option-style valuation model developed by Burgstahler and Dichev (1997).

The remainder of the paper is organized as follows. Section 2 reviews the notion of scale effect
(as described by Easton and Sommers (2003)), and provides an example with simulated data
where the scale effect is caused by non-linearities in the relationship between variables. Section
3 matches the scale effect with the lognormal distribution and provides two examples where the
scale effect also appears even if variables are independent. Section 4 defends the logarithmic
transformation as an alternative for addressing the scale effect. Using US data, section 5
confirms the existence of scale effect when a standard ‘price level’ regression is run $ market
value against earnings and book value $ and shows how this effect is removed when a logarithmic
transformation is applied. Relying on the Burgstahler and Dichev (1997) option-style valuation
model, section 6 discusses the economic interpretation of coefficients estimates obtained in
section 5. Section 7 presents conclusions and implications for future research.

SCALE EFFECT UNDER NON-LINEARITIES

Easton and Sommers (ES) (2003) document the overwhelming influence of large firms in
‘price-levels’ regressions US data (as do Akbar and Stark (2003) on UK data2). They refer
to this overwhelming influence as the scale effect. This prevents the researcher from
obtaining unbiased coefficient estimates. Removal of large firms does not remove the
coefficient bias caused by the scale effect. In the sample that remains, the group of firms
with the largest scale (larger market capitalization) becomes the group of observations
exerting significant influence. They also show that it takes the removal of approximately
the top 60% of market value observations before this effect disappears.

P. Garrido, P. J. Vázquez

2

(2) We decline to use the Barth and Clinch (2009) approach since they do not use real data but simulate. Regarding
Wu and Xu (2008), and following Barth and Kallapur (1996), we are not interested in deflators since the use of them
could potentially exacerbate scale bias.
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ES argue that the scale effect is caused by non-linearties in the relationship between market
value and accounting variables. Figure 1 shows this possibility. Consider two variables (x,
y) with a non-linear relationship: variable x is a (0,1) normal random variable and variable
y equals x2. We extract 5,000 observations from variable x and analyze the presence of the
scale effect estimating regression (1):

(1)

Following ES, we demonstrate the influence of scale in regression (1) using studentized
residuals, which are measures of the influence of individual observations. After studentized
residuals are obtained from each observation, we form 40 groups based on y values (group
1 being the smallest group and group 40 the largest). For each group, a mean of the
studentized residuals statistics is calculated. The graph labeled “all 40 groups” in Figure
1 is the plot of these means (on the y-axis) against the variable y group on the x-axis. In order
to analyze the overwhelming influence of “large” (in y) observations in regression (1), we
then delete the 3 groups of observations with higher values of y, re-estimate the regression,
and re-calculate the mean of studentized residuals for each of the remaining groups. These
data are labeled in Figure 1 according to the number of groups remaining.

“Price-Levels” Regressions: “Scale-Effect” or “Distribution Effect”?

FIGURE 1

Coefficient Bias in OLS Regression yi = !0 + !1·xi +  i −variable x is a (0,1) normal random variable and variable y
equals x2− After Progressively Deleting Firms with Largest y 

(The bias is measured using means of studentized residuals for groups formed on y)

Notes:
Regression (1) is conducted and the studentized residual is calculated for each observation. We then form 40 groups based on
y (group 1 being the smallest group and group 40 the largest). Then for each group, a mean of the studentized statistics is
calculated. The studentized residual for an observation is the residual obtained using the coefficient estimated with this
observation omitted from the regression and divided by the standard error of the regression. The graph labeled “All 40 Groups”
is the plot of these means (on the y-axis) against the y group on the x-axis. Then we delete the three groups of observations with
the largest y, re-estimate the regression, and re-calculate the mean of the studentized residuals for each of the remaining groups.
These data are labeled above according to the number of groups remaining.



40

Considering the full sample (all 40 groups), the mean of the studentized residuals is between
-0.77 and 0.79 for each of the 34 groups with the smallest values of variable y. It then
increases to 2.01 for the group with the third-to-largest y value, 2.73 for the group with the
second-to-largest y value, and 3.87 for the group of observations with the largest y. This
indicates that observations with large values of y exert undue influence on regression (1).
When deleting the fortieth group we find that the mean of studentized residuals for the
largest remaining group increases to 3.39, which reflects its significant influence on
regression estimates. After 3 rounds of deletions, the largest remaining group now has a
mean of studentized residuals of 2.91 (labeled “Groups 1-37” in Figure 1).

To achieve a mean of studentized residuals under 1.96 in the largest remaining group, 29
groups must eliminated. This is exactly the same phenomenon described by Easton and
Sommers (2003) using real data.

SCALE EFFECT AND LOGNORMAL DISTRIBUTION

As we have pointed out, Easton and Sommers (2003) argue that the scale effect is caused
by non-linearities in the relationship between variables. But non-linearities are only one
possibility. We argue that the scale effect could also appear when at least one of the variables
follows a lognormal distribution, even if variables are independent. The idea behind the
scale effect is the overwhelming influence of outliers, that is, observations far from the
majority of the data with a rather large influence on the regression plane. In Market Based
Accounting Research, researchers often tackle extremes by deleting the top and bottom
1%, 2% or 3% of the distribution of all regression variables. But this solution will work in
a short-tailed distribution. If the distribution is lognormal3 (distributions with a single, long
tail), the classical removal procedure will fail.

As an example, consider the distribution of a lognormal random with mean 6.25 and
standard deviation 1.754. From Figure 2 it is clear that classical removal procedure is not
a feasible solution for the problem of outliers. The results of deleting the top 1% of the
distribution are reported in Panel A. The distribution is still strongly skewed to the right
(skewness 3.75, very far from zero, the normal case) –around 3% of the date rely out of
interval ["±3·#], all of them on the right side. Deleting the top 2%, 3% or even 10% of the
distribution (Panels B, C and D, respectively) does not solve the problem of outliers.

P. Garrido, P. J. Vázquez

3

(3) In Economics, lognormal distribution is typically used for representing distributions of some economic variables
(i.e. income).
(4) We have observed that a lognormal distribution with those parameters fits our data quite well. However, real values
of those parameters are unobservable, and we are only interested here in pointing out the implications of working with
data that follows any lognormal distribution.
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FIGURE 2

Distribution and Descriptive Statistics of a (6.25, 1.75) lognormal random variable (n=5000)
after deleting the top and bottom 1%, 2%, 3% and 10%; respectively
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We argue that scale effect also appears if at least one of the regression variables follows a
lognormal distribution. Relying on this argument, we are able to simulate a scale effect even
if variables are independent. Figure 3 shows this possibility. Figure 3 is constructed in the
same way as Figure 1, but in this case variables are independent. We run the following
regression:

(2)

Variable x remains the same, that is, a (0,1) normal random variable, while Logn is a
lognormal random variable with mean 6.25 and standard deviation equal to 1.75. As in
previous simulations, we extract 5,000 observations from both variables5.

P. Garrido, P. J. Vázquez

FIGURE 3

Coefficient Bias in OLS Regression Logni = !0 + !1·xi +  i − x is a (0,1) 
normal random variable and Logn is a (6.25,1.75) lognormal random variable−

After Progressively Deleting Firms with Largest Logn
(The bias is measured using means of studentized residuals for groups formed on Logn)

Notes:
Regression (1) is conducted and the studentized residual is calculated for each observation. We then form 40 groups based on
y (group 1 being the smallest group and group 40 the largest). Then for each group, a mean of the studentized statistics is
calculated. The studentized residual for an observation is the residual obtained using the coefficient estimated with this
observation omitted from the regression and divided by the standard error of the regression. The graph labeled “All 40 Groups”
is the plot of these means (on the y-axis) against the y group on the x-axis. Then we delete the three groups of observations with
the largest y, re-estimate the regression, and re-calculate the mean of the studentized residuals for each of the remaining groups.
These data are labeled above according to the number of groups remaining.

(5) We choose these parameters because they seem to approximate quite well market value annual distributions for US
firms (period 1992-2002).
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Considering the full sample6 (all 40 groups), the mean of the studentized residuals is
between -0.52 and 0.79 for each of the 36 groups with smallest values of y. It then increases
to 1.16 for the groups with the fourth-to-largest values of y, 1.68 for the groups with the
third-to-largest values of y, 2.64 for the groups with the second-to-largest values of y, and
5.02 for the groups of observations with the largest y. After 3 rounds of deletions, the largest
remaining groups now have a mean of studentized residuals of 3.57 (labeled “groups 1-37”
in Figure 3). To achieve a mean of studentized residuals under 1.96 in the largest remaining
groups, 24 groups must be eliminated. It is clear that Figures 1 and 3 are describing the
same phenomena.

We have shown that the scale effect could also appear when even one of the regression
variables follows a lognormal distribution, even if variables are independent. But the
question is: can we match this finding with real data? Or stated differently, in “price level”
regressions, does any variable follow a lognormal distribution?

Figure 4 examines the distribution of market capitalization for US firms (year 1993,
n=2,115)7. As in Figure 2, it is clear that classical removal procedures (the top and bottom
1%, 2% or 3% of regression variables distribution) are not a solution to the problem of
outliers. Even if we delete the top and bottom 10% of the distribution, the distribution is
strongly right skewed. Analyzing the right tail, we find 54 observations with marker
capitalization higher than ["+3·#], that is, observations that could be considered as outliers
in a normal distribution.

“Price-Levels” Regressions: “Scale-Effect” or “Distribution Effect”?

(6) After deleting the top and bottom 1% of the distribution of both variables.
(7) Empirical findings presented in subsequent sections are based on annual regressions. The same pattern is observed
when considering the full sample or different years.
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FIGURE 4

Distribution and Descriptive Statistics of Market Capitalization (year 1993; n=2115)
after deleting the top and bottom 1%, 2%, 3% and 10%; respectively

Now the second question is: could Easton and Sommers’ (2003) results be driven by market
capitalization distribution? Or, stated differently, is the scale effect a pure econometric
phenomenon?
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In order to address this possibility, we run the following regression:

(3)

where MC1993 is the market capitalization for US firms (year 1993, n=2115); xi is a (0, 1)
normal random variable and  the error term.

Figure 5 provides evidence for the existence of scale effect in regression (3). Figure 5 is
constructed in the same way as Figures 1 and 3. Considering all observations8 (labeled “all
40 groups” in Figure 5), the mean of the studentized residuals is between -0.43 and 0.58
for each of the 36 groups with the smallest market capitalization. It then increases to 0.86
for the groups with the fourth-to-largest market capitalization, 1.35 for the groups with the
third-to-largest market capitalization, 2.31 for the groups with the second-to-largest market
capitalization, and 5.44 for the group of observation with the largest market capitalization.
Alter 3 rounds of deletions, the largest remaining group now has a mean of studentized
residuals of 4.43. Again, to achieve a mean of studentized residuals under 1.96 in the largest
group, 21 groups (more than 50% of the data) must be eliminated. Easton and Sommers
(2003) would describe this phenomenon, as the scale effect.

“Price-Levels” Regressions: “Scale-Effect” or “Distribution Effect”?

FIGURE 5

Coefficient Bias in OLS Regression MV1993 = !0 + !1·xi + ei −variable x is a (0,1) nomal random variable and  MV1993 is
Market Capitalization (year 1993, n=2115)−After Progressively Deleting Firms with Largest MV1993

(The bias is measured using means of studentized residuals for groups formed on MV1993)

Notes:
Regression (2) is conducted and the studentized residual is calculated for each observation. We then form 40 groups based on MV1993

(group 1 being the smallest group and group 40 the largest). Then for each group, a mean of the studentized statistics is calculated.
The studentized residual for an observation is the residual obtained using the coefficient estimated with this observation omitted from
the regression and divided by the standard error of the regression. The graph labeled “All 40 Groups” is the plot of these means (on
the y-axis) against the MV1993 group on the x-axis. Then we delete the three groups of observations with the largest y, re-estimate the
regression, and re-calculate the mean of the studentized residuals for each of the remaining groups. These data are labeled above
according to the number of groups remaining.

(8) Deleting the top and bottom 1% of the distribution of both variables.
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ALTERNATIVES FOR ADDRESSING THE SCALE EFFECT: WEIGHTED
LEAST SQUARES VS. LOGARITHMIC TRANSFORMATION

As Easton and Sommers (2003) pointed out, results of the regression of market capitalization
on financial statement data are driven by a relatively small subset of the very largest firms
in the sample.  They refer to the overwhelming influence of the largest firms as the scale
effect. Their argument that scale is market capitalization leads them to deflate the regression
by market capitalization via a weighted least squares regression (WLS).

Nonetheless, if the scale effect is related to the lognormal distribution of one of the variables
that enter in the regression, there is an alternative way to address the scale effect:
logarithmic transformation. If we apply a logarithmic transformation to a variable that
follows a lognormal distribution we will obtain a variable that is normally distributed. The
presence of extreme values is drastically reduced. The long tail, typical of lognormal
distributions, disappears. The transformed variable will not cause any scale effect.

Figure 6 confirms this intuition. We rerun regressions (2) and (3)9 but now apply a
logarithmic transformation to the dependent variable (a lognormal random variable and
market capitalization, respectively). As in the previous example, we calculate the
studentized residuals for each observation and group observations into forty groups based
on the value of the dependent variable. Then we calculate the mean of studentized residuals
for each size partition and plot results. The scale effect, as described by Easton and
Sommers (2003), disappears. In both cases, the mean of studentized residuals increases
monotonically, in a range that goes from -2.5 to 2.5. That is, small and large observations
(identifying the dependent variable with size) exert the same influence on regression.

(9) Deleting the top and bottom 1% of the distribution of both variables. 

4
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We defend the superiority of the logarithmic transformation against the WLS procedure. A
weighted regression involves giving a weight to each observation. ES (2003) propose the
inverse of market capitalization as the appropriate weight. By doing so, they force large
firms to enter the regression with less weight. The scale effect disappears but small firms
will drive results; to some extent we are losing information. Applying a logarithmic
transformation all observations are equally weighted10, so no information is wasted.
Furthermore, as long as we are interested in applying robust estimation techniques (based
in some kind of weighted least regression), the possibility of using weights remains
available.

FIGURE 6

Coefficient Bias in OLS Regressions (2) and (3) After Applying a 
Logarithmic Transformation to the Dependent Variable 

(The bias is measured using means of studentized residuals for groups formed on the value of the dependent variable)

Notes:
Regression (2): Log(Logni) = !0 + !1·xi +  i ; variable x is a (0,1) normal random variable and Logn is a (6.25,1.75) lognormal random
variable (n=5000).
Regression (3): Log(MV1993) = !0 + !1·xi +  i  ; variable x is a (0,1) normal random variable and  MV1993 is Market Capitalization for
US firms (year 1993, n=2115).
In both cases, regression is conducted and the studentized residual is calculated for each observation. The studentized residual for
an observation is the residual obtained using the coefficient estimated with this observation omitted from the regression divided by
the standard error of the regression. We then form 40 groups based on dependent variable (group 1 being the smallest group and group
40 the largest). Then for each group, a mean of the studentized statistics is calculated. Graphs labeled “LOG(LOGN)” and “LOG(MV)”
are the plot of these means (on the y-axis) against the dependent variable group on the x-axis for regressions (2) and (3), respectively.

(10) As an illustration, consider the following example. Assume two observations with market capitalization equal to
10 and 100. Easton and Sommers (2003) weighted regression will impound weights equal to 1/102 and 1/1002,
respectively. Thus the first observation receives a weight that is 100 times the weight impounded to the second one. If
we apply logarithmic transformation, both observations will be equally weighted.
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EMPIRICAL RESULTS

In this section, we first replicate Easton and Sommers’ (2003) results concerning the
existence of the scale effect when annual “price level” regressions are run using US data11.
Secondly, we show how this effect is removed when applying a logarithmic transformation. 

5.1 Scale effects in “price-levels” regressions (US data)

As in Easton and Sommers (2003), we run the following annual cross-sectional regressions:

(4)

where:

MCit = is the market capitalization (price per share times number of shares outstanding) for
firm i at the end of period t,

BVit =  is the book value of common equity reported in the balance sheet of firm i at the end
of period t,

NIit =  is net income reported in the income statement firm i for the period t-1 to t,

These regressions are conducted for each of the years 1993 to 2003. The sample consists
of all US firms available on Compustat (Global Vantage) for the selected period. Banks and
financial services firms and firms with negative book value were deleted. We also exclude
firms with negative earnings because logarithmic transformation does not apply to negative
numbers.12 The results of these regressions are reported in Table 1.

Comparison of the results presented in Table 1 (undeflated data) with those reported by
Easton and Sommers (2003) shows three main differences. Looking at the period 1993-
199913, we found a lower coefficient on book value for each year. In contrast, we found a
higher coefficient on earnings for each year. The two differences are well explained by the
absence of loss firms in our sample. Following the “Abandonment hypothesis” (Hayn, 1995;
Berger et al., 1996; Bursgtahler and Dichev, 1997), firms with negative earnings are more
likely to liquidate cease operations. In these types of firms, book value (acting as a proxy
for liquidation value) will be the only relevant variable.

P. Garrido, P. J. Vázquez

5

(11) It is usual in Market-based Accounting Research to delete banks, financial services and negative book values
(Burgsthaler, D. and I. Dichev, 1997; Fama and French, 2002; among others). However, as an anonymous reviewer
points out, Easton and Sommers (2003) do not make this deletion explicit, so we cannot compare results. Nonetheless,
given the small percentage of this type of firms in relation to the whole sample, we argue that our findings are still
robust.
(12) Nevertheless, if we are interested in loss firms, one possibility arises: isolating the firms and taking logs of absolute
values.  
(13) 1993-1999 is the period where the two works match.
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In order to demonstrate the existence of a scale effect, we follow Easton and Sommers (2003)
procedure. We form 40 groups within each set of annual observations based on market
capitalization. The mean of the studentized residuals are then calculated for each group

TABLA 1.- ANALYSES OF ANNUAL OLS REGRESSION OF MARKET CAPITALIZATION ON
BOOK VALUE AND NET INCOME

Regression: MCit = !0 + !1·BVit + !2·NIit +  it (4)

1993
17.46 0.88 12.52

0.83 2,037
(0.66) (18.68) (35.74)

1994
74.10 0.27 12.85

0.86 2,213
(3.27) (6.80) (50.87)

1995
43.91 0.67 12.20

0.80 2,212
(1.32) (11.78) (36.16)

1996
138.17 0.41 14.13

0.81 2,293
(3.80) (7.62) (44.88)

1997
-22.96 1.12 14.85

0.76 2,175
(-0.41) (17.22) (37.48)

1998
-142.07 1.02 18.01

0.67 2,028
(-1.68) (10.88) (30.98)

1999
-253.05 0.98 20.10

0.62 2,009
(-2.01) (8.41) (28.75)

2000
-71.21 0.69 18.38

0.68 1,837
(-0.59) (6.64) (31.09)

2001
-125.26 0.75 19.09

0.73 1,486
(-1.03) (8.76) (34.60)

2002
-45.31 0.19 17.94

0.83 1,510
(-0.59) (3.26) (50.73)

2003
32.34 0.63 16.70

0.79 1,540
(0.29) (9.39) (38.20)

Mean -32.17 0.69 16.07

Coefficients (t-statistics) Adjusted

Year !0 !1 !2 R2% N

Notes:
MCit is the market capitalization (price per share times number of shares outstanding) for firm i at the end of period t,
BVit is the book value of common equity reported in the balance sheet of firm i at the end of period t,
NIit is net income reported in the income statement firm i for the period t-1 to t,
N         is the number of observations.
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within each year. Means across the 11 years of data are then computed for each of the 40
groups. Finally, we repeatedly estimate equation (4) each time deleting the largest remaining
group from the 40 groups we started with. Figure 7 presents the results after every third
round of deletion. Considering the full sample (plot labeled “all 40 14groups”) the mean of
annual means of studentized residuals is between -0.15 and 0.14 for all groups except group
40. It then increases to 2.83 for the groups with the largest market capitalization. After 3
rounds of deletions, the largest remaining group must not have a mean of annual means of
studentized residuals greater than 1.96, so 13 groups must be eliminated (this removes
32.5% of the data). As Easton and Sommers (2003) state: “clearly, simply deleting the
largest firms is not a feasible solution to the problem of the scale effect”.

P. Garrido, P. J. Vázquez

(14) We do not report book value and earnings descriptive statistics, because they are qualitatively the same  as those
reported for market capitalization (Figure 4 )

FIGURE 7

Coefficient Bias in OLS Regression of Market Capitalization on 
Book Value and Net Income After Progressively Deleting Firms

with Largest Market Capitalization
(The bias is measured using means of studentized residuals for groups formed on Market Capitalization)

Notes:
Regression (4) is conducted and the studentized residual is calculated for each observation. We then form 40 groups based on market
capitalization (group 1 being the smallest group and group 40 the largest). Then for each group, a mean of the studentized statistics
is calculated. The studentized residual for an observation is the residual obtained using the coefficient estimated with this observation
omitted from the regression and divided by the standard error of the regression. The graph labeled “All 40 Groups” is the plot of these
means (on the y-axis) against the market capitalization group on the x-axis. Then we delete the three groups of observations with the
largest y, re-estimate the regression, and re-calculate the mean of the studentized residuals for each of the remaining groups. These
data are labeled above according to the number of groups remaining.
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5.2. Removal of the scale effect when a logarithmic transformation is applied

Following the arguments presented in section 4, we hypothesize the scale effect will
disappear if we apply a logarithmic transformation to all variables in equation (4). Those
variables $ market capitalization, earnings and book value $ seem to follow distributions
that approximate quite well to a lognormal one. Taking logs, distributions will reverse closely
to a normal distribution15 avoiding econometric problems related to strongly skewed
distributions (i.e. the scale effect) and making the classical removal procedure a feasible
solution to the problem of outliers $ potential influential observations16.

Applying a logarithmic transformation to Equation (4) yields the following regression:

(5)

Results from estimating Equation (5) are presented in Table 2. Before comparing results
with those from Table 1 (untransformed data), we first analyze whether the scale effect has
been mitigated through data transformation.

As in previous subsection, we first run annual regressions (5) and calculate studentized
residuals for each observation. We form 40 groups within each set of annual observation
based on market capitalization. The mean of the studentized residuals and also the mean of
the absolute values of the studentized residuals (to make our results comparable with those
from Easton and Sommers (2003)), are then calculated for each group within each year.
Mean across the 11 years of data are then computed for each of the 40 groups.

“Price-Levels” Regressions: “Scale-Effect” or “Distribution Effect”?

(15) We do not posit that the selected variables are lognormal, however they are quite close to it. So if we take logs, we
will obtain distributions quite similar to the normal one (results, not shown, confirm this aspect).
(16) Previous research has well documented a different relationship between price and earnings depending on whether
the latter is negative or positive (Hayn, 1995; Burgstahler & Dichev, 1997; Collins et al, 1997; Collins et al. 1999; Joos
& Plesko, 2005; among others). So, if we are interested in testing the value relevance of earnings we must distinguish
between loss and profit firms. Since we have to isolate loss firms, we can take absolute values of losses, run regressions
applying the logarithmic transformation and then multiply by minus one the coefficient estimate in order to obtain the
right coefficient.
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TABLA 2.- ANALYSIS OF ANNUAL OLS REGRESSION OF MARKET CAPITALIZATION ON BOOK VALUE AND
NET INCOME AFTER APPLYING A LOGARITHMIC TRANSFORMATION

Regression: Log(MCit) = !0 + !1· Log(BVit) + !2· Log(NIit) +  it (5

1993
1.79 0.56 0.43

0.88 2,037
(31.49) (31.20) (26.96)

1994
1.86 0.49 0.49

0.88 2,213
(34.21) (27.37) (30.58)

1995
1.97 0.52 0.44

0.85 2,212
(33.17) (27.24) (26.33)

1996
1.80 0.58 0.40

0.84 2,293
(29.98) (31.73) (24.29)

1997
1.80 0.61 0.38

0.85 2,175
(29.87) (34.15) (24.48)

1998
1.63 0.60 0.42

0.80 2,028
(21.71) (27.58) (22.19)

1999
1.80 0.60 0.37

0.71 2,009
(19.29) (23.46) (16.65)

2000
1.36 0.64 0.41

0.77 1,837
(14.58) (25.22) (18.97)

2001
1.48 0.65 0.39

0.82 1,486
(16.38) (28.58) (20.46)

2002
1.52 0.55 0.49

0.86 1,510
(19.39) (27.45) (28.43)

2003
2.07 0.51 0.47

0.86 1,540
(26.77) (24.99) (26.58)

Mean 1.73 0.58 0.43

Coefficients (t-statistics) Adjusted

Year !0 !1 !2 R2% N

Notes:
Log(MCit) is the logarithmic of market capitalization (price per share times number of shares outstanding) for firm i at the end of 

period t,
Log(BVit) is the logarithmic of book value of common equity reported in the balance sheet of firm i at the end of period t,
Log(NIit) is the logarithmic of net income reported in the income statement firm i for the period t-1 to t,
N                is the number of observations.
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Figure 8 presents the results. We find that the means of annual means of studentized
residuals are no longer significant at conventional levels, ranging from -1.28 for the group
with the smallest market capitalization to 0.94 for the group with the largest market
capitalization. Additionally, the means of annual means of absolutes values of studentized
residuals, indicating heteroscedasticity, also are no longer significant, ranging from 0.61
for the twentieth group of firms to 1.22 for the group of the smallest firms. From Figure 8,
it is clear that the scale effect has been successfully mitigated via data transformation and
there are no longer signs of heteroscedasticity.

“Price-Levels” Regressions: “Scale-Effect” or “Distribution Effect”?

ECONOMIC INTERPRETATION OF LOGARITHMIC TRANSFORMATION

Having documented the econometric justification of a logarithmic transformation when
estimating a price level regression, in this section we provide an economic justification.

We rely on the Burgstahler and Dichev (1997) option-style valuation model. In this
framework, the market value reflects an option-style combination of recursion value
(capitalized expected earnings when the firm recursively applies its current business

FIGURE 8

Coefficient Bias in OLS Regression of Market Capitalization on
Book Value and Net Income After Applying a Logarithmic Transformation

(The bias (heteroscedasticity) is measured using means of studentized residuals 
(absolute values of studentized residuals) for groups formed on Market Capitalization)

Notes:
Regression (5) is conducted and the studentized residual is calculated for each observation. The studentized residual for an
observation is the residual obtained using the coefficient estimated with this observation omitted from the regression and divided by
the standard error of the regression.  We then form 40 groups based on market capitalization (group 1 being the smallest group and
group 40 the largest). Then for each group, a mean of the studentized statistics is calculated. The same analysis is performed using
absolute values of studentized residuals.

6
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technology to its resources) and adaptation value (the value of the firm’s resources adapted
to an alternative use). The relative weights on the two components of value reflect the
possibility that the firm exercises the option to adapt resources to an alternative use.
Specifically, the firm will opt out of recursion value in favor of adaptation value when
recursion value is low relative to the adaptation value. The market value of equity reflects
the option to choose either the recursion value or the adaptation value (AV) whichever is
larger, at some point in the future. That is, 

(6)

Burgstahler and Dichev (1997) derive an empirical version of equation (6), expressing the
market value of equity (MC) as a function of both book value (BV) and net income (NI),
where BV is a proxy for adaptation value and NI is a proxy for recursion value:

(7)

The empirical version of Equation (6) approximates the market value of equity for a given
firm at time t as a linear combination of book value and expected earnings at time t17. As
earnings become extremely low relative to book value, book value becomes the sole
determinant of market value and !2 approaches zero while !1 approaches unity. In contrast,
as earnings become extremely high relative to book value, earnings become the sole
determinant of market value and !1 approaches zero while !2 approaches the earnings
capitalization factor (c).

Theoretical Equation (6) can be redefined using transformed variables:

(8)

An empirical version of Equation (8) could then be:

(9)

P. Garrido, P. J. Vázquez

(17) Following Easton (1999), when we are valuing a firm we can consider two types of assets: on the one hand, those
assets that, since they are expected to continue, are valued based on their future expected earnings (c·NI); and on the
other, those assets that are valued at liquidation prices (BV), since they are related to discontinued operations. If all
assets are expected to continue operations, then the value will be MC=c·NI. In contrast, if the firm discontinues all
operations, then the value will be MC=BV. We can apply logs in each scenario so we will obtain log(MC)=log(c)+log(NI)
in the former case and log(MC)=log(BV) in the latter. The final whole value of the firm can then be expressed as a linear
combination of both, with coefficient estimates moving in a [0,1] range. Our results support this theoretical
background.



55

or, 

(10)

where !0 = !2·Log(c).

In this alternative setting, as earnings become extremely low relative to book value, a2

approaches zero while !1 approaches unity. On the other hand, as earnings become
extremely high relative to book value, !1 approaches zero while !2 approaches unity. 

We are now able to discuss coefficient estimates from regression (5) $ equivalent to Equation
(10). Results reported in Table 2 reveal that both book value and earnings coefficient
estimates are consistent with predicted values. Coefficients are always located in a (0-1)
range. Moreover, the sum of both coefficients averages just 1.01 across all individual year
regressions, ranging from 0.97 to 1.05. This confirms the complementary valuation roles of
book value and earnings as predicted by Burgstahler and Dichev (1997).18

In short, logarithmic transformation not only removes the scale effect; it also provides
meaningful economic estimates.

CONCLUSIONS

We consider the scale effect as a pure econometric phenomenon. We relate this effect with
regression variables distribution. Typical variables used in Market Based Accounting
Research (i.e. market capitalization, book value, total assets, positive earnings, losses) seem
to follow a distribution that approximates quite well to a lognormal one. The mean feature
of this type of distribution is the presence of a single, long tail revealing the existence of a
large amount of extreme observations. If a distribution is lognormal, classical removal
procedures $ the top and bottom 1%, 2% or 3% of the distribution $ will fail. Applying a
logarithmic transformation to a variable that follows a lognormal distribution we obtain a
variable that is normally distributed. The presence of extreme values is drastically reduced
and the transformed variable will not cause any scale effect.

Matching Easton and Sommers (2003) results, we document that untransformed price-levels
regressions suffer from the problem of the scale effect. Once we apply a logarithmic
transformation, the resulting regression specification no longer suffers from the coefficient
bias and heteroscedasticity present in the undeflated regression. Easton and Sommers

“Price-Levels” Regressions: “Scale-Effect” or “Distribution Effect”?

(18) Logarithmic transformation could be useful in assessing relative value-relevance studies, since coefficient
estimates on earnings and book value reflect relative weights.

7
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(2003) also mitigate the scale effect deflating by market capitalization via a weighted least
squares regression. However, this methodology may result in misleading empirical findings.
When we give weights we are impounding subjective criteria in the data. Easton and
Sommers (2003) rank the data by size (market capitalization), so results are driven by this
selection: large firms will receive very low weight in comparison to small firms. Applying
logarithmic transformation, all observations are equally weighted and no information is
wasted.

Regarding the economic interpretation of coefficient estimates, we rely on the real-option
valuation framework proposed by Burgstahler and Dichev (1997). Coefficient estimates are
in accordance with theoretical predictions.

P. Garrido, P. J. Vázquez
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