
© Servicio de Publicaciones. Universidad de Murcia. All rights reserved. IJES, vol. 8 (1), 2008, pp. 95-106

IJES

UNIVERSITY OF MURCIA

International Journal
of

English Studies
www.um.es/ijes

Developing WordSmith

MIKE SCOTT*
University of Liverpool

ABSTRACT
WordSmith Tools, since its launch in 1996, has had a rather unusual history and the aim of
this paper is to record some of the chief influences on its development. The paper thus
presents and discusses the history of WordSmith Tools and its predecessors going back to
the early 1980s when processors were much slower, memory very limited and disk space
expensive. It is structured around the discussion of certain key issues, principles and themes.
These include: “on the fly” processing, corpus flexibility, language independence, user
control aspects, the unpredictability of design needs, a move towards remote processes,
modular construction principles, software production management, pattern-seeking and the
development of new corpus linguistic terms.

KEYWORDS: WordSmith, on the fly, modular construction, pattern-seeking

*Address for correspondence: Mike Scott. School of English, University of Liverpool, Liverpool L69 3BX,
UK. Tel: + 44 151 794-2928; Fax: + 44 151 794-2739; e-mail: Mike.Scott@liv.ac.uk

 Mike Scott

© Servicio de Publicaciones. Universidad de Murcia. All rights reserved. IJES, vol. 8 (1), 2008, pp. 95-106

96

I. INTRODUCTION

The aim of this paper is to present an account of decisions taken by me as the author of a
software package intended for lexical analysis of texts. As such, it will give an outline
explaining some aspects relevant to the context in which the work was done, and then go
into the principles underlying the design. This is not an account for software engineers,
though; here, the aim is to remain as non-technical as possible, to make it understandable by
the ordinary user of this or other similar applications which do such lexically and textually
relevant tasks as concordancing, word-listing, analysis of key words, investigating aspects of
vocabulary such as keyness, consistency, dispersion and collocation, clustering, etc.

The principles I shall be examining relate mostly to the ordinary user of text corpora
who would probably be teachers or students, working at home, on their own PC, without
access to any kind of sophisticated laboratory.

II. BACKGROUND AND PRINCIPLES

Why did I develop WordSmith when I already had a perfectly good job as a lecturer? I was
supposed to write books and articles as my research, not to make software tools. And
developing software can be quite a lonely task. Some time in 2004 or 2005 I discovered that
I was the sole author of published software to be returned in the official lists of research
undertaken at my university; I knew this because I had to request those responsible for our
portfolio database to incorporate the category software; they had already included a range of
printed matter, music, film scores etc, but software was not yet in. Our university, it seemed,
developed software for internal use but did not publish it formally.

Most applied linguists – by training I am an applied linguist of the language-teacher
variety – do not know programming languages or particularly want to learn one; there are
computational linguists who do, of course, often formally qualified in programming, but
they tend to work in very different ways. Theirs tends to be team-work, in sophisticated
laboratories, using relatively expensive equipment and non-domestic operating systems and
programming environments. Their research aims are lofty. This is emphatically not what
WordSmith is like. Essentially, the impulse to write WordSmith came instead from a desire
to practise a self-taught hobby, making tools I could understand and which would relate to
my own theories, work and interests. Or those of my students.

I learned what programming is about, by purchasing an early programmable
calculator in the late 1970s. The program was not stored, one typed it in each time one ran it,
I think, and it did something ridiculous like calculating the descent of a moon landing
module, nothing linguistic, but I began to see what might be meant by programming – and
its links to programmed learning theories.

Soon thereafter, my work took me back to Brazil. A major influence there came with
two of the visits made by Tim Johns of the University of Birmingham, the Tim Johns who
coined the phrase "data-driven learning" and was among the first to implement it. Tim knew

Developing WordSmith

© Servicio de Publicaciones. Universidad de Murcia. All rights reserved. IJES, vol. 8 (1), 2008, pp. 95-106

97

about the new kinds of personal computer which were just beginning to become available to
the layman; boldly he suggested I get myself a “New Brain” – not a transplant but a make of
computer costing about £100 at that time, and of course less sophisticated than the chips in
very low cost gadgets nowadays.

This computer was a challenge. When I got to my place of work in Florianópolis,
Brazil, I realised there was no software I could run on it, although I had lashed out on a
fancy new printer costing at least double the price of the computer. It was either store the
new computer and expensive dot matrix printer in the wardrobe, or learn to program. I
probably cursed Tim as I struggled with my first proper programming language, Basic, and a
few mysterious extra commands involving something called peeking and poking, which I
largely ignored. One upshot of that was a word-processing program, extremely crude, but
the only one I had any access to, and serviceable within the constraints of the computer
(both program and saved texts highly unreliably read off cassette tape, for example!).

A few years later, Tim came back to Brazil. He had already agreed to publish
MicroConcord with Oxford University Press, and as is their wont they were pressing him to
deliver. Tim showed his version to me; I was impressed. He was leaving versions with
various universities. Just before leaving he asked me if I would provide what we now call
support to the users and I found myself trying to understand the program and rise to this
challenge. To cut a long story short, some time thereafter, Tim and I agreed that we would
both design and I would write a new implementation following from his original design, and
after negotiations with and suggestions from Simon Murison-Bowie of OUP, who wrote an
excellent manual for it, MicroConcord eventually saw the published light of day in 1993.

II.1. The “on the fly” principle

MicroConcord1. was a concordancer written to run on the widespread operating system of
the time, DOS. The language I wrote it in was Turbo Pascal, with the time-critical sections
in Assembler2.. It could not produce more than about 1,600 concordance lines, but it worked
quickly and well, and incorporated a rudimentary system of studying collocates. It worked
by reading the source texts, seeking out the search-word or phrase and storing each hit,
along with its context, in the PC’s RAM, its memory. This is called an “on the fly” strategy,
opposed to one which pre-processes the corpus and allocates a code to each running word,
so that all subsequent searches merely need to seek out a number instead of a word. Seeking
a number such as 653 or 31965 is many times quicker than seeking out the search-word
letter by letter.

In May 1991, at an ICAME meeting in Ilkley, I remember discussing the on-the-fly
strategy used by MicroConcord with Jeremy Clear of OUP, then engaged in British National
Corpus development. Cobuild, which he later worked for, and almost all other large-scale
computational projects, used a pre-processing strategy, and Jeremy claimed that on-the-fly
method I was using would inevitably prove too slow to be of use. By 1993, he had to

 Mike Scott

© Servicio de Publicaciones. Universidad de Murcia. All rights reserved. IJES, vol. 8 (1), 2008, pp. 95-106

98

recognise that much smaller-scale project could manage well with the on-the-fly method.
This method is still alive and kicking today in WordSmith.

II.2. Flexible corpus

With an on-the-fly strategy, because there is no immediate need to pre-process the corpus,
one is very likely to be able to choose any reasonable text or set of texts. This means a
flexible corpus. Instead of being tied to the current standard corpus, such as the BNC, one’s
choice of texts to work with can also be on-the-fly. This proved popular with domestic users
wanting to process their own texts. It is also coherent with a wish to analyse any text, not
just some officially-selected or officially-sanctioned ones.

II.3. Language-independent

Another principle I have endeavoured to stick to throughout is language-independence. The
software does not have its own special ways of processing the text depending on the
language and ought in principle to avoid this. Early in developing WordSmith, I was faced
with a need to write a word-listing program. There was another concordancer on the market
rivalling MicroConcord, the Longman Mini-Concordancer, which allowed its users to see a
word-list of the text it processed as well as the concordance. And I had a student from
Malaysia, Fadilah, who wanted to analyse the vocabulary of her textbooks; for this a
wordlist would evidently be useful: she would be able to see them all in alphabetical as well
as in frequency order. Accordingly, I wrote her a program to read in a text file and print out
all the words with their frequencies. At that time I began to realise that deciding what counts
as a "word" is not a completely straightforward matter (Scott & Tribble 2006, Chapter 2)
and that counting sentences is quite tricky too.

A major turning point came when thinking about the humble form "Mrs." If the text
is in English, it is very likely that capital M followed by lowercase r and s and a full stop
then a space and then another capitalised form does not count as an end of sentence. For that
matter, my own knowledge of a few European languages told me that "Mrs. Smith" in
German, French, Portuguese or Spanish would certainly be a case of an English lady's title
and not a sentence break. But if I built into my software an assumption that Mrs. plus a
space plus an initial capital letter does not mean sentence-end, I'd have to build in
knowledge that UN means U.N. means United Nations, even though in some languages the
initials would be reversed, but there again would those languages use an abbreviation (NU)
as English does, or wouldn't they? Clearly there would be no way for me to know how
Lithuanian or a host of other languages would work3..

Accordingly, at that turning-point I opted for language-independence. I do not
always manage to stick to this one hundred percent, but in general the software does not

Developing WordSmith

© Servicio de Publicaciones. Universidad de Murcia. All rights reserved. IJES, vol. 8 (1), 2008, pp. 95-106

99

have special handling for different languages. Where this is desirable4., my solution is
always to let the user specify how.

II.4. User control of settings

This is hardly unique to my software, but is an important principle. The whole philosophy of
raising to user-visibility a quite complex set of settings which can be saved and examined
and altered is important. I have to recognise that showing a lot of mysterious settings in the
Controller does make the program more complex, less intuitive, less user-friendly. It also
makes the Help more detailed. However, the typical user I am writing for may well want to
know what defaults were in effect; certainly many of those who write to me do care about
the defaults and often wish to vary them. I am unapologetic about this now: if you don't
want to know about the details then don't look, but if you do you should be able to find out
how the program does its work.

There is a scale of adjustability which applies to tools in general. In the case of a
hammer, a chisel, or a spade, there is really nothing to adjust, no moving parts, and no
settings to get wrong. The spade has a certain width and length of blade which will affect
how deeply it can penetrate into the earth and how much soil it can lift, and there exist other
differently shaped spades, but each one has no adjustable settings. It is at the "zero
adjustment" edge of the scale. At the other extreme, there is a tool like those used for tuning
the electronics of car engines, the kind one glimpses attached to Formula One machines.
WordSmith has always had a number of settings "under the hood" but as time has gone by
and version has succeeded version, it has acquired more user adjustability of the settings and
better information about them in the "Notes" tab which appears with each output type.

The level of visibility is ordered by degrees. The most noticeable of the settings
comes when the user cannot proceed without choosing or defining something, as in choosing
texts or in the case of computing mutual information relationships for collocates, choosing a
relevant wordlist. Next come settings which are straightforwardly visible in the Controller,
where there are a lot of different tab-separated settings.

Figure 1: Main settings

As is visible in Fig. 1, under General there is a "restore last work" checkbox; if this is
checked and the settings are saved, then in wordsmith.ini one will see a set of saved
preferences such as

 Mike Scott

© Servicio de Publicaciones. Universidad de Murcia. All rights reserved. IJES, vol. 8 (1), 2008, pp. 95-106

100

[GENERAL]
keep everything simple=NO

show toolbar=NO
show statusbar=YES
restore last file=YES

…
Figure 2: ini file settings

These settings go by default, that is they remain as they were when last saved. The
user isn't pestered to answer any questions before they can proceed but they may have to
decide to change a setting to get the desired result, e.g. when working with a different
language.

Finally, a few settings in the .ini file are not visible as choices in the general settings
but are buried away only in that file. This is done where a setting needs to be completely or
partly private – only those I have informed need know how to change such settings. This
applies, for example, where a special version of WordSmith is needed as was the case where
a research project was using WordSmith with children and limiting their choices to certain
text files5., or in the case where a version of WordSmith was in use by the Guardian
newspaper for generating keywords on their text archive in automated mode.

Despite the plethora of settings, intrinsically not easy to understand and appreciate,
both MicroConcord and WordSmith were originally planned to be used by students like
Fadilah, students who would probably be running the software on their own PC, not in an
air-conditioned University laboratory with white-coated technicians and a booking system.
The idea was that although some basic training might be needed since users might not have
much corpus sophistication, they would not be faced with complex command language
syntax but a fairly simple set of type-in boxes and OK buttons. In the event, I discovered
that students, even of the primary-school variety, had few problems. The real difficulties
were much more likely to come from their teachers, who not only risked losing face, but
often were too sure of what could be done and should be done and could never be done.

II.5. Unpredictability

At first, like Margaret Thatcher, I too was sure I was right. Whatever I wanted for
WordSmith would be the "natural" choice – I had simply not imagined any other alternative.
But then people from all sorts of countries I had never been to started to write in, right from
the first publication in 1996. I get messages of all sorts, always in English, nearly always
very gentle, patient and courteous. Some of them call me "Mr. Smith", not knowing – and
why should they? – that there's a pattern in silversmith, blacksmith, goldsmith etc. which
leads to wordsmith. Sometimes their message was simply that there was a bug affecting a
certain procedure in connection with the type of analysis they were carrying out. At others

Developing WordSmith

© Servicio de Publicaciones. Universidad de Murcia. All rights reserved. IJES, vol. 8 (1), 2008, pp. 95-106

101

they would ask whether it was possible for the program to do something differently. This is
largely why WordSmith develops as it does, organically, with a new mini-version coming
out every week or so. As these tiny alterations build up, eventually there is a qualitative
change and it seems appropriate to consider launching a new major version, in exactly the
way one announces a change of state from child to teenager or from teenager to adult, from
single to married etc with a rite of passage.

The history of the major versions is as follows: version 1.0 came out in 1996,
followed in 1997 by version 2.0. A couple of years later, version 3.0 came out, in 1999. It
was not until 2004 that version 4.0 could be produced. This was a version incorporating
major changes, adapting to Microsoft's move to 32-bit processing, to Unicode and a series of
other alterations, and involved a complete re-write. Four years later, in 2008, out came
version 5.0.

The aspect of unpredictability came in with my increasing realisation that, again like
Margaret Thatcher6.I was very often wrong. For example, I had simply assumed that any
wordlist would necessarily fold all cases into one, let us say upper case, until some people
asked me not to. I think this parallels what happened to me as a language-teacher. When I
was starting out, I was sure I knew very well what was correct and what was wrong, and I
must have told large numbers of people in Brazil so quite assuredly. Later on, I went to live
near the US, teaching in Mexico, and I discovered a lot of ways of saying things that
contradicted my earlier certainty, especially when first encountering people who seemed to
be free to use almost every noun as a verb and vice-versa.

II.6. Standalone but download-only

WordSmith and its predecessor were originally designed to work on the user's PC in stand-
alone mode, not needing to relate to central resources on a remote host server. However, as
time has gone by a few of the facilities have migrated to the web. Since 1996 the application
has been obtained only by Internet download, not on disk. All of the applications (the tools
and other utilities) are installed on the user's local hard disk, and the help file comes with the
download along with a good number of support files in the basic package; but the help
system itself is duplicated on the web. Other facilities such as FAQs, a blog and a forum,
and a few get-started and how-to help systems are only to be found at the website, as are the
update package files so that users can check they have the latest version. At the time of
writing, my belief is that that most WordSmith users are likely to have always-connected
broadband internet, so the probability is that more and more of the support systems will
gradually move to or get duplicated on the web.

The updating policy has meant that a new version can be issued every few days. This
means that WordSmith never stands still for long, but like the hair on your head grows
perceptibly longer, indeed whiter or curlier or straighter too, as time goes by. Sometimes it
even gets a trim or a shampoo. The effect of this is to distance such a publication quite far
from the publication conditions of a journal article or a book: an article will typically never

 Mike Scott

© Servicio de Publicaciones. Universidad de Murcia. All rights reserved. IJES, vol. 8 (1), 2008, pp. 95-106

102

get a second edition, no matter what; and a book is very unlikely to get more than a couple.
Both of these typically last, in the sense of being still read, years or decades after
publication. Software that can be re-issued so quickly, on the other hand, is like a web-page,
and these are well known not to last: one might reasonably suppose that software which
changes often cannot last either. Luckily for me, though, MicroConcord and WordSmith
have emphatically not been ephemeral. Both are still in use; WordSmith is still growing. I
think it is past its adolescence but has yet to buy a home and settle down to solid
respectability, it is still experimenting with life and checking out new avenues.

III. MODULAR DESIGN

WordSmith is written using Pascal and Assembler. Assembler is a brute to work with. It is a
language which essentially forces the programmer to decide which part of the computer's
chip will hold each code and do very simple operations like addition or multiplication using
that part of the computer's chip7.An analogy: suppose you had to tell a robot to open the
door. A human does it without thinking, but for the robot that presumably means something
like approach the door, extend hand towards door-knob, turn knob until a click is felt, pull
gently, etc.

In Assembler you'd be issuing lots of commands such as increase electricity current
to motor by 1 volt, increase current to motor by 1 volt, push rod B with rod A by one unit of
force, etc. This language has the effect of getting things done very quickly, but is a pain to
think through. Pascal, on the other hand, is a so-called high-level language. In Pascal the
commands might be more like raise electricity current to motor to 250 volts, push rod B with
rod A till it stops at plate X, etc. It too requires the programmer to think through the whole
process of opening the door in great and usually boring detail. Each tiny step or routine has
to be done in the right order for the whole thing to count as successful opening of the door.
In a Pascal environment (the same applies to other languages such as C#, C++, Visual Basic
and Java) it is likely that a whole series of other processes will be going on as the electric
current rises to 250 volts, for example checking that no wires have shorted across. The
programmer does not have to worry about these additional processes, but they will slow
things down somewhat, which is why I use some sections of Assembler – for its speed.
Incidentally, this is the main reason that WordSmith and MicroConcord worked only with
PCs or Apples running Windows: Assembler makes assumptions about the computer's chips
themselves.

The environment I use to prepare my Pascal-language programs is called Delphi.
This is a so-called rapid-application development tool. What that means, for example, is that
if I am designing a window with a menu and some buttons which can be pressed or clicked,
I can very simply stretch any button to make it taller or wider, to change its colour or the
word which appears on it. The Delphi environment already "knows" how to display the
slight changes in shape or colour that make the button look as if it has been pressed. Thus
when programming in Delphi it is easy to make windows bigger or smaller or add a simple

Developing WordSmith

© Servicio de Publicaciones. Universidad de Murcia. All rights reserved. IJES, vol. 8 (1), 2008, pp. 95-106

103

checkbox or calendar object, as a whole set of objects come with the environment. By
analogy then it would be easy to change our robot's eyes from green to stripy pink, but the
programmer still has to think carefully through in detail what is required for the robot to
open the door.

The various WordSmith sub-programs use a modular design. Each tool is a separate
program. There are sub-programs which take care of the communications between them, so
that when you change a setting in the Controller the change is detected by Concord or
KeyWords. The reason for the modular design is that the whole programming job is a one-
man effort and I simply could not keep track of all the complex aspects of each if they all
were part of the one main application.

Finally, the Help system is written using a wonderful tool called Help & Manual.
This is something like a word processor which allows one at the click of a switch to generate
a PDF, a Help file, or a series of linked and indexed web-pages.

IV. MANAGEMENT

Most software development is carried out by teams. That means having managers, targets,
team meetings and complex rules written out in detail which specify how things will be
done. A one-man effort, on the other hand, can quite easily be managed in an ad hoc way;
indeed typically WordSmith is developed like that. If I decide I need to program the opening
of a door as in our hypothetical robot example above, I start experimenting with routines to
bring the robot near the door, to decide when it's near enough and hasn't crashed into it, etc.
As I'm writing, I am still pretty unsure what will work, and I run into unexpected snags. The
robot twists the door handle so far that it bends, for example. Or the robot's arm bends but
the handle won't budge. These snags need to be corrected one by one. My code starts to
contain a mix of sections which seem to be working well, sections I'm not sure of, sections I
am not using but which must be kept because the draft idea seemed to offer promise, etc.

Not very different from the writing of an academic paper. Ideally, after it is all
working well, I should go back over everything and write little notes to myself explaining
what my reasoning was, and what the point of each routine really was. This is important –
remember that a routine might be something akin to raise electricity current to motor to 250
volts and months later I will easily forget why the voltage has to be 250 and where it all fits
into the overall process. In practice I do end up writing comments for to help my own
subsequent de-bugging, but not enough of them, and usually only when I find myself
months or years later wondering why the voltage needed to rise and by how much.

This sort of writing process helps me to understand why I disagree with Meyer
(2002:141) who writes: “Of course, it is highly likely that the next generation of corpus
linguists will have a much better background in programming. Thus, these corpus linguists
will be able to use their knowledge of languages such as Perl or Visual Basic to write
specific "scripts" to analyse texts, and as these scripts proliferate, they can be passed from
person to person and perhaps make obsolete the need for specific text analysis programs to

 Mike Scott

© Servicio de Publicaciones. Universidad de Murcia. All rights reserved. IJES, vol. 8 (1), 2008, pp. 95-106

104

be designed”. It is true that scripts can be written to do a lot of jobs for analysing texts. And
it is not rocket science, anyone can write them and some corpus linguists do so and find the
skill extremely useful. The reason why it doesn't happen much, in my opinion, is that most
corpus linguists are like most car drivers: we want to drive and we are prepared to buy the
fuel and learn the highway rules and pass a standard test, but we are simply not interested in
changing the tyres for bigger or thinner ones, or tweaking the engine's performance. As car
drivers we keep to the roads; if we want to go across the hilltops, we tend to go on foot. We
are less interested in the car than in the view.

V. PATTERN-SEEKING

What one sees leads me to the issue of patterning and pattern recognition. Tools are needed
in almost every human endeavour, from making pottery to predicting the weather. Computer
tools are useful because they enable certain actions to be performed easily, and this facility
means that it becomes possible to do more complex jobs. It becomes possible to gain
insights because when you can try an idea out quickly and easily, you can experiment, and
from experimentation comes insight. Also, re-casting a set of data in a new form enables the
human being to spot patterns.

This is ironic. The computer is an awful device for recognising patterns. It is good at
addition, sorting, etc. It has a memory but it does not know or understand anything, and for a
computer to recognise printed characters, never mind reading hand-writing, is a major
accomplishment (WordSmith Help: section Tools for pattern spotting). Human beings are
very good at noticing visual patterns, and this is why WordSmith's lists and plot displays are
useful. In effect, the chief purpose of the software is to take a pre-existing shape, the text,
then mix it all up and sort it all out, showing it in a quite different order. The computer does
not see any patterns, but the human user does – and then gets some sort of insight.

V.1. New features, new terms

As WordSmith has developed there has been a constant need to create new terms. The very
term "concordance" was initially quite problematic, since users were not used to seeing the
same element repeated vertically down a page or screen, and they were not used to reading
the concordance vertically. Luckily, Google and other search engines taught the world to
look at displays not very different from a concordance.

Terms I have had to create include "cluster", "consistency", "standardised type-token
ratio" and "key key word". For repeated strings I chose cluster because phrase might be
taken to imply some sort of grammatical status8.and because n-gram seemed too techie.
Consistency was created to deal with the notion that a word might be found consistently
across lots of different text-types or only within a narrow set (Paul Nation calls this "range"
and has for many years offered a program with that name to investigate the phenomenon).

Developing WordSmith

© Servicio de Publicaciones. Universidad de Murcia. All rights reserved. IJES, vol. 8 (1), 2008, pp. 95-106

105

Within consistency then there was a need to distinguish between detailed (showing all the
words of each text) and simple consistency (showing only how many texts each word
occurred in). Standardised type-token ratios were needed because of the limitations of
ordinary type-token ratios, whose values relate too strongly to the amount of text being
processed. The term key key word was probably a failure. I originally intended it for words
which are key in lots of texts, assuming that somehow these words would be generally key,
somewhat as general nouns like thing and car and people are more widely applicable (and
more consistent) than pencil and dragster and taxidermist. I imagined I might get KKWs
like police and wine and good. Instead, I later discovered, KKWs were quite likely to be
pronouns like she. This is because a good number of texts where the main person mentioned
is a woman have she as a key word, and the number of such texts is typically greater than
the number which has a more lexical word such as people or car as a key word.

VI. CONCLUSION

Writing software has become a long-term commitment. I have enjoyed it, but when I bought
myself a "New Brain" in 1982 I never realised that I was signing up for a quarter century
rollercoaster ride. I think I have been lucky to have been in there at the beginning. The
rollercoaster is now ready to get off those tracks and head off across the scenery. I am
looking forward to seeing where we get to next.

NOTES

1. It still exists and is a free download available at www.lexically.net. The corpora which came with
MicroConcord, however, are not available any more, because the permissions sought at the time did not
envisage this.
2. Turbo Pascal is a so-called high-level language which has a fairly large (a few hundred items) fixed
vocabulary of formally defined terms such as begin, end, while, for if. Anyone who knows
English can guess at what some of these instructions might mean. It is sometimes possible for a programmer
to read a script in Pascal and understand what happens, like a conductor reading a musical score. Assembler
has a much more restricted vocabulary, which is far more arcane. Its commands go straight to the various
components on the computer's chips, much as if you had to steer a car by issuing a command like "turn the
front wheels by 7 degrees left." It gets the job done very fast but I find it bends my head.
3. As a matter of fact I did end up learning a lot about some languages. One system I built into WordSmith 1-3
and gladly ditched for WS4 was knowledge of appropriate sort order. The correct sort order even for English is
a bit tricky in a few cases such as MacDonald (is this put with McFarlane or just before mad?) Determining
the sort order for Spanish and Danish is also slightly complex. For Hungarian it is more tricky, and may
involve triplets of letters like Mac determining the order. When it came to WS4 I found a way of using
Microsoft's routines instead.
4. For example in the treatment of hyphens or apostrophes, or in lemmatisation.
5. ESRC study (R000223900), 'An investigation into corpus-based learning about language in the primary
school', 2002-4, with Paul Thompson and Alison Sealey. The project was an investigation of the potential of
corpus-based teaching for children's evidence-based learning about language. Further information can be found
on the project web page http://www.rdg.ac.uk/app_ling/sst.htm.
6. In Margaret Thatcher's case, it is far from sure that she ever realised or accepted she was wrong while in
power.

 Mike Scott

© Servicio de Publicaciones. Universidad de Murcia. All rights reserved. IJES, vol. 8 (1), 2008, pp. 95-106

106

7. The "peeking" and "poking" referred to earlier is where the programmer goes right down to the level of
Assembler. What these mean is seeing what is in a certain part of the computer's memory (peeking) and
replacing that with something different (poking).
8. Sinclair (2008: 407) points out that phrase if modified by verb or noun was taken over by early TG grammar
but argues that the word unmodified, is “best left as a pre-theoretical term”.

REFERENCES

Delphi: http://www.codegear.com/products/delphi

Help & Manual : http://www.helpandmanual.com

Meyer, C. F. (2002). English Corpus Linguistics: an introduction. Cambridge: Cambridge

University Press.
Paul Nation’s website: http://www.victoria.ac.nz/lals/staff/paul-nation/nation.aspx

Scott, M. & Tribble, C. (2006). Textual Patterns: keyword and corpus analysis in language

education. Amsterdam: Benjamins.

Sinclair, J. McH. (2008). The phrase, the whole phrase, and nothing but the phrase. In S.

Granger & F. Meunier, Phraseology: an interdisciplinary perspective. Amsterdam:
Benjamins. 407-410.

Tim Johns' website: http://www.eisu2.bham.ac.uk/johnstf/index.html

