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Summary. Smooth muscle cells build up the media of
mammalian arteries and constitute one of the principal
cell types in atherosclerotic and restenotic lesions.
Accordingly, they show a high degree of plasticity and
are able to shift from a differentiated, contractile pheno-
type to a less differentiated, synthetic phenotype, and
then back again. This modulation occurs as a response to
vascular injury and includes a prominent structural
reorganization with loss of myofilaments and formation
of an extensive endoplasmic reticulum and a large Golgi
complex. At the same time, the expression of cyto-
skeletal proteins and other gene products is altered. As a
result, the cells lose their contractility and become able
to migrate from the media to the intima, proliferate, and
secrete extracellular matrix components, thereby
contributing to the formation of intimal thickenings. The
mechanisms behind this change in morphology
and function of the smooth muscle cells are still
incompletely understood. A crucial role has been
ascribed to basement membrane proteins such as laminin
and collagen type IV and adhesive proteins such as
fibronectin. A significant role is also played by
mitogenic proteins such as platelet-derived growth factor
(PDGF) and basic fibroblast growth factor (bFGF). An
improved knowledge of the regulation of smooth muscle
differentiated properties represents an important part in
the search for new methods of prevention and treatment
of vascular disease.
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Introduction

Smooth muscle cells (SMCs) build up the media of
the arterial wall and play an important role in the
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pathogenesis of atherosclerosis and restenosis after
angioplasty (Ross and Fuster, 1996; Schwartz and Reidy,
1996). In the early stages of these processes, SMCs
migrate from the media to the intima, where they later
proliferate and secrete extracellular matrix components,
thereby contributing to the mass of the developing
intimal lesions. This change in function of the
differentiated and quiescent cells normally found in the
media is accompanied by an extensive structural
reorganization and is referred to as a transition from a
contractile to a synthetic phenotype. Noticeably, it is a
reversible process and after the formation of an intimal
plaque, the SMCs are able to regain a contractile state.
The morphological and functional properties of the cells
will therefore differ markedly in different stages of the
disease process. As a consequence, analysis of biopsy
material taken at a certain point will not necessarily
reflect the state of the cells at the time the lesions are
formed.

During the last 10-15 years, considerable interest has
been paid to the control of vascular SMC differentiation.
The object has been to widen our knowledge of the
embryonic development of the vasculature as well as the
involvement of SMCs in vascular disease. Particular
attention has been given to the role of polypeptide
growth factors in the regulation of SMC migration and
proliferation (Bobik and Campbell, 1993; Libby and
Ross, 1996). Recently, the extracellular matrix has also
been brought into focus as a possible source of
signalling molecules influencing the phenotypic state of
the SMCs (Assoian and Marcantonio, 1996; Ruoslahti
and Engvall, 1997). Both in vitro and in vivo models
have been used extensively in all parts of this work. In
the present article, a short summary of the literature
regarding the modification of the SMCs following
vascular injury is presented. For details concerning the
study of SMCs in culture, the reader is referred to recent
reviews (Owens, 1995; Thyberg, 1996).

Development of the arterial wall

The phenotypic modulation of SMCs in the early
stages of vascular disease is in many ways a reversal of
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the differentiation process seen during development of
the vascular system. Hence, a brief account of
vasculogenesis will be given as background to the
coming discussion. In the embryo, the heart and the
main blood vessels are first formed by mesodermal cells
(angioblasts) that differentiate into endothelial cells
(Fishman, 1996; Beck and D’Amore, 1997; Risau,
1997). As soon as a closed circulatory system is
established, new vessels arise by budding from
preexisting vessels. This latter process is called
angiogenesis and is important in the formation of new
blood vessels also later in life, e.g. during wound
healing, tumor growth, and other diseases. Among the
many mitogens that act on endothelial cells, vascular
endothelial growth factor (VEGF) has been identified as
a key regulator of vasculogenesis and angiogenesis
(Ferrara and Davis-Smyth, 1997). Accordingly, both
VEGF (Breier et al., 1992) and VEGF receptors
(Millauer et al., 1993) are expressed in association with
developing blood vessels and mice deficient in VEGF
(Carmeliet et al., 1996a; Ferrara et al., 1996) or VEGF
receptors (Fong et al., 1995; Shalaby et al., 1995) fail to
form normal blood vessels and die in utero. In like
manner, the endothelial receptor tyrosine kinases Tie-1
and Tie-2 have been found essential in vasculogenesis
(Dumont et al., 1994; Sato et al., 1995; Maisonpierre et
al., 1997).

Once the primary vascular network is established,
local mesodermal cells gather around the endothelial
tubes and differentiate into SMCs, supposedly under
influence of factors released by the endothelial cells
(Hungerford et al., 1996). The monoclonal antibody used
to define these early cells of the smooth muscle lineage
recognizes a 100 kD protein identified as smooth muscle
a-actinin (Hungerford et al., 1997). Recently, it has also
been suggested that embryonic endothelial cells may
transdifferentiate into SMCs and take part in formation
of the vessel media (De Ruiter et al., 1997). Among the
molecular markers associated with developing vascular
SMCs, many are of cytoskeletal origin (Glukhova and
Koteliansky, 1995; Owens, 1995; Katoh and Periasamy,
1996). One of the first to appear is smooth muscle a-
actin. However, nonmuscle B-actin is initially the
principal actin isoform and smooth muscle a-actin
becomes the predominant isoform at a later stage
(Kocher et al., 1985; Owens and Thompson, 1986;
Glukhova et al., 1990a). Other cytoskeletal proteins that
show successively increasing expression levels during
maturation of the vessel wall include smooth muscle
myosin heavy chains (Glukhova et al., 1990a; Miano et
al.,, 1994), heavy caldesmon, calponin, and SM22 (Frid
et al., 1992; Duband et al., 1993; Miano and Olson,
1996).

Extracellular matrix components and their receptors,
the integrins, evidently play a crucial role in control of
blood vessel formation (Luscinskas and Lawler, 1994;
Glukhova and Koteliansky, 1995; Farhadian et al.,
1996). The adhesive protein fibronectin is produced
early during vasculogenesis, whereas laminin and other

basement membrane components appear in maturing
vessels (Risau and Lemmon, 1988). In accord with this
observation, serious defects in vascular development
occur in mouse embryos lacking fibronectin (George et
al., 1993) or fibronectin receptors (Yang et al., 1993).
The production of fibronectin and laminin variants by
the SMCs is also changed in a developmentally
regulated pattern. Expression of fibronectin containing
extra domain A (ED-A) and B (ED-B) is high in the
fetus and then decreases after birth, whereas fibronectin
lacking these domains continues to be expressed at a
high level (Glukhova et al., 1990b; Peters and Hynes,
1996; Peters et al., 1996). There is further a shift in
synthesis of laminin from B1-chain containing isoforms
in the fetus to B2-chain containing isoforms in the adult
(Glukhova et al., 1993). At the same time, the integrin
a8, is the main laminin receptor in fetal aorta, whereas
both oy8, and a38, appear in_the adult (Belkin et al.,
1990; Duband et al., 1992; Glukhova et al., 1993).

Elastin, collagen, and proteoglycans are quanti-
tatively the main extracellular matrix components of the
vessel wall (Wight, 1996). In large arteries, an inner and
outer elastic lamina separate the media from the intima
and adventitia, respectively. Moreover, elastic lamellae
divide the media into distinct cell layers. During
development of the cardiovascular system, tropoelastin
gene expression starts early (Holzenberger et al., 1993).
In the rat, it peaks in the late fetal and early postnatal
periods and ceases 2-3 months after birth (Belknap et al.,
1996). Collagen type I and III are the main collagen
types in blood vessels and are organized in fibrillar
bundles around the SMCs in the media. They are both
essential during vasculogenesis and mice lacking
collagen type I die in utero due to rupture of blood
vessels (Lohler et al., 1984). In the absence of collagen
type 111, collagen type I fibrillogenesis is disturbed and
most of the animals die shortly after birth as a result of
blood vessel defects (Liu et al., 1997). The major types
of proteoglycans found in the interstitial matrix of the
vessel wall include the large chondroitin sulfate
proteoglycan versican, the small leucine-rich dermatan
sulfate proteoglycans decorin and biglycan, and the
keratan sulfate proteoglycan lumican. In the basement
membranes underlying the endothelial cells in the intima
and surrounding the SMCs in the media, the heparan
sulfate proteoglycan perlecan is also found (Wight,
1996). During vasculogenesis, perlecan gene expression
starts at the time when SMC replication begins to
decline and thereafter remains high (Weiser et al., 1996).
Otherwise, only little is known about proteoglycan
production in the fetal vasculature.

Although the mechanisms of action still are
incompletely understood, platelet-derived growth factor
(PDGF - a dimer of A and/or B chains) and PDGF
receptors (the a subunit binds the A as well as the B
chain of PDGF and the B subunit only the B-chain) have
been found necessary for normal cardiovascular
development. Mice deficient for the PDGF B-chain die
perinatally and show dilation of large arteries and diffuse
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hemorrhages. However, the number of SMCs in the
arterial media is not clearly reduced and the primary
role of PDGF B is apparently not to stimulate cell
multiplication (Levéen et al., 1994). On the other hand,
no major defects in large blood vessels are observed in
PDGF B-receptor mutant mice, conceivably due to
compensation by the a-receptor (Soriano, 1994). In
agreement with this notion, the number of SMCs in the
arterial media of mice lacking PDGF a-receptors was
found to be reduced (Schatteman et al., 1995). Similar
effects were seen in embryos treated with antibodies
against PDGF-AA (Schatteman et al., 1996).
Conspicuous disturbances in formation of the vessel
media were also detected following inactivation of the
gene for tissue factor, the primary cellular initiator of
blood coagulation (Carmeliet et al., 1996b).

In parallel with the aforementioned changes in gene
expression, the morphology of the SMCs is distinctly
modified. Quantitative electron microscopic analyses
indicate that the cells in the media of the developing rat
aorta have a prominent endoplasmic reticulum and Golgi
complex during most of the fetal and early postnatal
period (Gerrity and Cliff, 1975; Nakamura, 1988).
Autoradiographic studies further reveal that these cells
replicate (Berry et al., 1972) and secrete extracellular
matrix components (Ross and Klebanoff, 1971; Gerrity
et al., 1975). As a result, the vessel grows in size, with a
marked increase in cell mass as well as collagen and
elastin content (Looker and Berry, 1972). However,
myofilaments gradually fill up larger and larger parts of
the cytoplasm. At the same time, the endoplasmic
reticulum and the Golgi complex become smaller. In the
rat, this shift of the medial SMCs from a synthetic
phenotype to a more specialized contractile phenotype is
completed at an age of 2-3 months, i.e. when the aorta
reaches its final size (Gerrity and Cliff, 1975).

Atherogenesis and restenosis after angioplasty

Atherogenesis is generally considered as an
inflammatory-fibroproliferative response to vascular
injury (Ross and Fuster, 1996). It is a complex process
involving endothelial cells and SMCs of the vessel wall
itself (Di Corleto and Gimbrone, 1996; Owens, 1996),
extracellular matrix components (Wight, 1996),
lipoproteins (Chisolm and Penn, 1996), platelets,
monocytes/macrophages and lymphocytes derived from
the blood (Hansson and Libby, 1996; Raines et al.,
1996), and a large collection of cytokines, growth factors
and other biologically active molecules (Libby and Ross,
1996). Since the lesions of atherosclerosis develop
slowly over a number of years, it is difficult to follow
their evolution directly in man. According to recent
classifications, at least eight types of lesions can be
distinguished on a morphological basis (Stary et al.,
1994; Stary, 1996). Among them, three major groups
will be mentioned here: the fatty streak (type I-1I), a
small local accumulation of lipid-laden macrophages
(foam cells) and a few SMCs in the intima; the fibrous

plaque (type IV-V), a larger accumulation of intra- and
extracellular lipid (lipid core) surrounded by a cap of
SMCs and a dense extracellular matrix; and, the
complicated plaque (type VI), characterized by the
occurrence of erosions or fissures and thrombotic
deposits or hemorrhage. Clinical symptoms mainly
appear in the third group and it is also in this group that
surgical intervention by angioplasty, atherectomy, or
bypass grafting is utilized. Even though the short-term
effects of these procedures are usually beneficial,
restenosis due to vascular remodelling and neointimal
hyperplasia remains an important and so far unresolved,
long-term complication (Landau et al., 1994; Anderson
and King, 1996; Bauters et al., 1996).

Because of the limited availability of biopsy material
and the consequent difficulties to follow the formation of
atherosclerotic and restenotic lesions in man, numerous
animal models have evolved (Armstrong and Heistad,
1990; Jackson, 1994). Recently, the mouse has found
increasing usage in this field (Breslow et al., 1996), and
the apolipoprotein E-deficient mouse has been
established as a model in which atherosclerotic lesions
resembling those observed in humans develop within a
few months (Plump et al., 1992; Nakashima et al., 1994).
Even if the rat resists most attempts to induce a true
atherosclerotic state, it has been extensively used to
explore the role of the SMCs in neointimal hyperplasia
after vascular injury (Schwartz and Reidy, 1996). Hence,
the present discussion will to a large extent relate to this
model. In order of appearance, the following points will
be treated: transition of medial SMCs from a contractile
to a synthetic phenotype; migration of SMCs from the
media to the intima; proliferation of SMCs in the intima;
secretion of extracellular matrix components in the
intima; and redifferentiation of SMCs in the intima.
Finally, a brief recapitulation of the literature dealing
with prevention of intimal thickening and restenosis will
be given.

Modulation from a contractile to a synthetic
phenotype

Structural reorganization

According to the response-to-injury hypothesis,
atherosclerotic lesions emanate as a reaction to damage
of the arterial wall (Ross and Fuster, 1996). The
principal causes of the damage are believed to be either
chemical (increased low-density lipoprotein levels,
smoking) or mechanical (hypertension, shearing stress).
In the balloon injury model introduced by Clowes et al.
(1983), a balloon catheter is inserted into an artery,
inflated with air or liquid, and passed through the vessel
a few times. As a result of this procedure, the endo-
thelium is denuded and one of the main barriers
regulating passage of macromolecules from the blood
into the vessel wall is lost (Clowes et al., 1978; Penn et
al., 1994, 1997). In addition, the inflated catheter exerts
a direct pressure on the underlying media. It seems likely
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that the loss of the permeability barrier and the strain on
the media are both important to bring about the
neointimal lesions, although the former factor appears to
be the most significant. Thus, lesions also form in the
absence of medial injury (Fingerle et al., 1990).
Moreover, the application of a hydrogel barrier in order
to prevent contact between the arterial wall and the
blood was found to strongly reduce intimal thickening
after balloon injury (West and Hubbell, 1996). In any
case, several days normally pass after the acute injury
before SMCs appear in the intima and start to produce a
lesion protruding into the vessel lumen. The signalling
machinery behind this process is therefore complex to
resolve.

The structural reorganization of the SMCs following
balloon injury of animal arteries has been studied by a
combination of electron microscopic, cytochemical, and
chemical methods. Within one week after the operation,
many of the SMCs in the innermost part of the media
show a decrease in the number of actin filaments and a
concurrent increase in size of the endoplasmic reticulum
and the Golgi complex. Some of these cells move
through fine openings in the inner elastic lamina and
spread over the exposed luminal surface of the vessel.
Subsequently, they start to replicate and in another week
a multilayered neointima consisting of synthetic SMCs
surrounded by a newly deposited extracellular matrix is
established (Griinwald et al., 1987; Manderson et al.,
1989; Thyberg et al., 1995). At the same time, the
cytoskeletal profile of the cells is modified with shifts
from smooth muscle a-actin to nonmuscle B-actin
(Gabbiani et al., 1984), from smooth muscle myosin to
nonmuscle myosin (Benzonana et al., 1988), and from
desmin to vimentin (Gabbiani et al., 1982). Part of the
SMCs in atherosclerotic and restenotic lesions likewise
show an altered morphology with a predominance of
secretory organelles rather than actin filaments (Ross et
al., 1984; Mosse et al., 1985; Nakamura and Ohtsubo,
1992; Stary et al., 1994; Chen et al., 1997a). It is also
well recognized that the cytoskeletal composition is
changed during atherogenesis with shifts from smooth
muscle to nonmuscle isoforms of actin, myosin, and
other associated proteins (Kocher and Gabbiani, 1986;
Glukhova et al., 1988; Aikawa et al., 1993; Sartore et al.,
1997).

In a recent study on rat carotid arteries, about two
thirds of the SMCs in the inner layer of the media were
found to have adopted a synthetic phenotype one week
after balloon injury, whereas the cells in the outer layers
of the media for the main part retained a contractile
phenotype as judged by electron microscopic analysis
and staining for smooth muscle a-actin. It was further
evident that all the SMCs appearing in the intima were
initially in a synthetic phenotype (Thyberg et al., 1997a).
Together with the results referred to above, these
observations suggest that the SMCs of the intimal
lesions originate from medial SMCs and that the latter
have to convert into a synthetic phenotype before they
are able to populate the intima (Fig. 1). In a similar

manner, the SMCs of atherosclerotic and restenotic
lesions probably derive from phenotypically modified
SMCs in the media. The fact that both contractile and
synthetic SMCs are usually found in such lesions may be
explained by the ability of the cells to redifferentiate
after an earlier change in phenotype (see below). Lately,
it has also been demonstrated that adventitial myofibro-
blasts may contribute to neointimal formation in injured
arteries (Shi et al., 1996a,b; Wilcox and Scott, 1996).
However, in this case a deeper damage with medial
disruption exposing the adventitia to the lumen is
required. Finally, it has been proposed that intimal SMCs
may arise from a small population of undifferentiated
stem cells, but good evidence for the existence of such
cells in the vessel wall is still lacking.

The mechanism behind the change in smooth muscle
phenotype following vascular injury is still poorly
understood. Previous in vitro studies have revealed that
the transition from a contractile to a synthetic phenotype
is not dependent on serum mitogens. Thus, freshly
isolated SMCs go through this process when seeded on a
substrate of plasma fibronectin in a defined medium,
conceivably by signalling via integrin receptors
(Thyberg, 1996). In agreement with this notion, it was
reported that the early SMC activation after balloon
catheterization is not prohibited in animals made
deficient in platelets, a major source of serum growth
factors (Fingerle et al., 1989). Moreover, it was recently
observed that vascular injury is associated with
internalization of caveolae from the surface of the SMCs
(Thyberg et al., 1997b). These fine invaginations of the
plasma membrane are enriched in signalling molecules
(Couet et al., 1997) and it seems likely that they are
implicated in the control of cell differentiation.
However, their exact role in smooth muscle phenotypic
modulation remains to be elucidated. The loss of the
endothelial barrier will also lead to an increased transfer
of lipoproteins into the arterial wall, but it is not known
how this influences the phenotypic state of the SMCs
(Olsson et al., 1995; Nielsen, 1996). Despite the absence
of the endothelium, no immigration of monocytes and
lymphocytes into the arterial wall is noted, and the latter
cell types are apparently not required in the activation of
the SMCs and the formation of a neointima. Likewise,
lymphocytes were found to play a minor role in the
formation of atherosclerotic plaques in the apolipo-
protein E-deficient mouse (Dansky et al., 1997).

The search for genes involved in the control of
smooth muscle differentiation and phenotypic
modulation is still in its beginning (Liau and Han, 1995;
McQuinn and Schwartz, 1995; Owens, 1995, 1996).
Using differential screening of a fetal aortic cDNA
library, H19 was identified as a developmentally
regulated gene expressed in SMCs of fetal but not adult
vessels (Han and Liau, 1992). Although its function
remains elusive, the H19 gene was shown to be
reexpressed in the neointima of injured rat arteries (Kim
et al.,, 1994) and in human atherosclerotic plaques (Han
et al., 1996). Using a similar approach, tropoelastin and
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procollagen type I were recognized as genes with a
markedly stronger expression in newborn than in adult
rat aorta and a noticeable reactivation in the neointima of
injured arteries (Majesky et al., 1992). Comparing
freshly isolated and late-passage rat aortic cells, a
number of gene markers distinguishing differentiated
and proliferating SMCs were described (Shanahan et al.,
1993). Most of these genes encode cytoskeletal or
extracellular matrix proteins and are probably a result
rather than a cause of the change in differentiated
properties of the SMCs. More interesting as potential
regulatory elements are the homeobox genes, several of
which have been found to be expressed in vascular
SMCs in a phenotype-specific pattern (Patel et al., 1992;
Gorski et al., 1993; Miano et al., 1996). Another gene
preferentially expressed in arterial SMCs and reported to
be down-regulated by vascular injury is APEG-1 (Hsieh
et al., 1996). After injury of the rat aorta, the fos, jun and
myc proto-oncogenes are rapidly induced (Miano et al.,
1993a,b). In vitro, the fos and jun genes were similarly
found to be activated already during the isolation of the
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SMCs (Hultgardh-Nilsson et al., 1997). As in the case
with the other genes referred to above, the precise
function of these immediate-early genes in the
phenotypic modulation is not known.

Role of extracellular matrix components

In the last several years, considerable interest has
been focussed on the role of the extracellular matrix in
vascular biology (Assoian and Marcantonio, 1996;
Ruoslahti and Engvall, 1997; Shattil and Ginsberg,
1997). A concept that has attracted the attention of our
laboratory is that adhesive proteins produced locally in
the arterial wall or derived from the blood take part in
determining the smooth muscle phenotype (Thyberg,
1996). As mentioned above, the SMCs of developing
arteries migrate and proliferate in a fibronectin-rich
matrix and later become surrounded by a basement
membrane as the vessels mature (Risau and Lemmon,
1988). In vitro studies have further demonstrated that a
substrate of fibronectin promotes the transition of adult
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rat aortic SMCs from a contractile to a synthetic pheno-
type, whereas substrates of the basement membrane
proteins laminin and collagen type IV retain the cells in
a contractile phenotype (Hedin et al., 1988). In vivo, a
potential scenario could be that vessel injury activates
proteolytic enzymes degrading the basement membrane
enclosing the SMCs, exposing the plasmalemma to
fibronectin and other molecules penetrating into the
intima and the inner parts of the media after removal of
the endothelium, thus generating signals altering the
phenotype of the SMCs. As a result, an earlier genetic
program is turned on and like the SMCs of embryonic
vessels, the modified SMCs start to migrate, proliferate
and secrete extracellular matrix components. Eventually,
the endothelium regenerates and the SMCs cease to
divide, deposit a new basement membrane around
themselves, and resume a contractile phenotype (Figs. 1,
2).

Recent immunoelectron microscopic findings in the
injured rat carotid artery confirm the above model
(Thyberg et al., 1997a). One week after the operation, a
large part of the SMCs in the inner layer of the media

had lost most of the intracellular staining for smooth
muscle a-actin as well as the pericellular reactivity for
laminin. In addition, a network of fibronectin had been
laid down on the exposed subendothelial tissue and
served as a substrate for movement of SMCs into the
intima. After two weeks, the SMCs were still mainly in a
synthetic state and had grown in number and formed a
multilayered neointima. Except for fine strands of
fibronectin, collagen fibrils and elastic fibers were now
found extracellularly. After five weeks, the intimal
SMCs had regained a basement membrane positive for
laminin and only small amounts of fibronectin were
detected in the pericellular matrix. Moreover, most of
the cells had readopted a contractile phenotype with a
cytoplasm rich in filaments of smooth muscle a-actin
(Thyberg et al., 1997a). These observations illustrate the
ability of the SMCs to shift between a contractile and a
synthetic phenotype.

In support of the model presented above, it has also
been demonstrated that vascular SMCs have integrin
receptors for fibronectin and laminin/collagen type IV
both in vivo and in vitro (Belkin et al., 1990; Clyman et
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al., 1990; Glukhova et al,, 1993). Not long ago, it was
further noticed that freshly isolated SMCs seeded on a
substrate of fibronectin show a progressive increase in
phosphotyrosine content of focal adhesions and a
concomitant increase in tyrosine phosphorylation of a
few proteins, including focal adhesion kinase (FAK).
Treatment with the tyrosine kinase inhibitor genistein
blocked assembly of focal adhesions, tyrosine phospho-
rylation of FAK, and transition of the SMCs into a
synthetic phenotype as judged morphologically. On the
other hand, cells seeded on laminin did not form focal
adhesions and the levels of protein tyrosine phospho-
rylation remained low (Hedin et al., 1997). In this
context, it is also interesting to mention that FAK is
expressed at high levels in the media of embryonic
vessels, where the SMCs are still in a synthetic
phenotype (Polte et al., 1994). Even if it needs to be
clarified why SMCs behave differently when interacting
with fibronectin and laminin/collagen type IV, these
results are in good agreement with the idea that the
extracellular matrix not only serves as a passive
mechanical support but also generates signals that
influence cell behavior (Juliano and Haskill, 1993;
Meredith et al., 1996). Examples of the involvement of
extracellular matrix components in SMC functions such
as migration and proliferation are given below.

Migration of smooth muscle cells into the intima

Electron microscopic and immunocytochemical
studies have shown that it is only phenotypically
modified SMCs (i.e. cells in a synthetic phenotype) that
migrate from the media to the intima after endothelial
damage (Thyberg et al., 1995, 1997a). This is in good
agreement with in vitro studies indicating that smooth
muscle o-actin (an actin isoform that is downregulated
in synthetic SMCs) retards cellular motility (Rgnnov-
Jessen and Petersen, 1996). In order to penetrate the
inner elastic lamina, the SMCs pass through fine
preexisting holes in this highly cross-linked protein
membrane. However, to do so they must liberate
themselves both from the basement membrane (probably
done already during the change in phenotype) and the
collagenous matrix filling the pericellular space. In
recent years, large interest has been paid to the function
of matrix metalloproteinases (MMPs) in this process.
These enzymes make up a family of zinc-dependent
endopeptidases with a crucial role in normal as well as
pathological tissue remodelling, the expression of which
is tightly controlled by cytokines and growth factors
(Birkedal-Hansen, 1995; Dollery et al., 1995).

In culture, SMCs stimulated by mechanical injury or
exposure to cytokines and growth factors produce both
MMPs (secreted and membrane-bound) and inhibitors
(TIMPs) regulating their activity (James et al., 1993;
Galis et al., 1994a; Kennedy et al., 1997; Pickering et al.,
1997a; Shofuda et al., 1997). The ability to do so is
phenotype-dependent and mainly associated with cells in
a synthetic state (Pauly et al., 1994; Sasaguri et al.,

1994). Thus, newly isolated rat SMCs seeded on
substrates of fibronectin or basement membrane proteins
(laminin/collagen type 1V) were found to express
stromelysin (MMP-3) mRNA at a high level in close
connection with the shift from a contractile to a synthetic
phenotype, whereas type IV collagenase (MMP-2)
mRNA showed a more constant level (Hultgdrdh-
Nilsson et al., 1997). Moreover, in vitro studies have
demonstrated that other types of proteases, secreted by
the SMCs or derived from the blood, may take part in
the degradation of the extracellular matrix and the
activation of latent forms of the MMPs (Clowes et al.,
1990; Kenagy et al., 1996; Lee et al., 1996; Galis et al.,
1997).

An upregulation of MMPs and other proteases has
likewise been observed following balloon catheter injury
(Bendeck et al., 1994; Southgate et al., 1996; Reidy et
al., 1996; Webb et al., 1997). Furthermore, treatment of
the animals with MMP inhibitors was found to repress
migration of SMCs from the media to the intima after
endothelial denudation (Bendeck et al., 1996a; Zempo et
al., 1996). In a similar manner, local overexpression of
TIMP-1 using transfected cells implanted onto injured
rat carotid arteries was reported to inhibit neointima
formation (Forough et al., 1996). Taken together, these
findings suggest a key role of MMPs in the movement of
SMCs into the intima after endothelial damage. An
increased expression of MMPs has also been noted in
human atherosclerotic and restenotic lesions (Henney et
al., 1991; Galis et al., 1994b, 1995; Nikkari et al., 1995,
1996; Knox et al., 1997). In this case, MMPs are
produced by SMCs as well as macrophages and are
believed to be involved not only in cellular migration but
also in destabilization of the tissue, thereby leading to an
increased risk of plaque rupture.

Although the SMCs need to degrade part of the
surrounding extracellular matrix to be able to migrate,
they also have to interact with this scaffold to advance
from the media to the intima. The macromolecules used
for this purpose include collagen type I and III, inherent
components of the vascular extracellular matrix, and
fibronectin, a plasma protein deposited in the intima and
the inner parts of the media (close to the fenestrae in the
inner elastic lamina) following destruction of the
endothelial barrier (Thyberg et al., 1997a). In vitro and
in vivo studies have indicated that the interaction of the
SMCs with these fibril-forming proteins is for the main
part mediated via the a By, asBy, asBy, and a B3
integrins (Skinner et al., 1994; Hoshiga et al., 1995;
Gotwals et al., 1996; Bilato et al., 1997), and that
migration occurs at an intermediate adhesion strength
(Di Milla et al., 1993; Koyama et al., 1996). It has
further been found that RGD-containing peptides (i.e.
peptides containing the cell-attachment sequence of
fibronectin and other adhesive proteins) limit neointima
formation in catheter-injured arteries, at least partly due
to an inhibition of SMC migration (Choi et al., 1994;
Matsuno et al., 1994).

To induce a directed migration of SMCs from the
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media to the intima, a chemotactic gradient is also
required. Among the factors that may serve this function,
PDGF and basic fibroblast growth factor (bFGF) have
attracted special attention (Fingerle et al., 1989; Ferns et
al., 1991; Jawien et al., 1992; Jackson et al., 1993;

!

. .

Jackson and Reidy, 1993; Bornfeldt, 1996; Mylldrniemi
et al., 1997). PDGF is released from degranulating
platelets adhering to the subendothelial matrix after
balloon injury. In addition, PDGF as well as bFGF may
be discharged from damaged endothelial cells (Barrett et

Fig. 3. Light (A) and electron (B, C) micrographs of neointimal thickenings in the rat carotid artery two weeks after balloon injury. In the light
micrograph, NI marks the neointima, M the media, and A the adventitia. In the electron micrographs, synthetic SMC with an extensive endoplasmic
reticulum (ER) are shown. They are surrounded by a dense extracellular matrix with collagen fibrils (C) and elastic fibers (E) as major structural
components. L: lysosomes; M: mitochondria; N: nucleus. Bars: A 50 um; B, C, 1 um.
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al., 1984; Speir et al., 1991) or mobilized from storage
sites in the extracellular matrix (Vlodavsky et al., 1991;
Raines and Ross, 1992; Raines et al., 1992; Taipale and
Keski-Oja, 1997). The mode of action of the mitogens
may in this case be to stimulate MMP production
(Birkedal-Hansen, 1995; Dollery et al., 1995; Kennedy
et al., 1997; Pickering et al., 1997a), integrin expression
(Janat et al., 1992; Seki et al., 1996; Pickering et al.,
1997b), and rearrangement of the actin cytoskeleton
(Claesson-Welsh, 1996; Bikfalvi et al., 1997). Although
few details are known, cytokines (Libby and Ross, 1996)
and eicosanoids (Jeremy et al., 1996) are other factors
that could be involved in the control of SMC migration
after vascular injury.

Intimal proliferation of smooth muscle cells

The number of SMCs that migrate from the media to
the intima in the course of atherogenesis and restenosis
is limited and the impressive size often reached by the
lesions is likely to be dependent on cell proliferation in
the intima. Accordingly, SMC replication has been well
documented in animal models such as the balloon-
injured rat carotid artery (Clowes et al., 1983, 1989;

Miano et al., 1993a,b; Indolfi et al., 1995; Wei et al.,
1997). For about a week following the appearance of the
first SMCs in the intima, many mitoses are noted here
and a neointima with densely packed cells and a
thickness equivalent to or even larger than the media is
formed (Fig. 3A). During this period, the SMCs are all
in a synthetic phenotype as distinguished morpho-
logically (Fig. 3B). Later, only few dividing cells are
detected, but some additional growth in thickness of the
neointima takes place by accumulation of extracellular
matrix components (Fig. 4A). However, within a few
weeks essentially all of the neointimal SMCs regain a
contractile phenotype as judged by the decrease in size
of the secretory apparatus and the reappearance of actin
filaments (Fig. 4B - Thyberg et al., 1995, 1997a).

The investigations referred to above indicate that the
phase of rapid SMC proliferation in the intima after
endothelial damage is restricted in time also when
lesions of large dimensions are formed. This could
explain the difficulties to find evidence for active cell
proliferation in atherosclerotic and restenotic lesions
(O’Brien et al., 1993; Rekhter and Gordon, 1995; Geary
et al., 1996; Schwartz and Reidy, 1996). Although
species differences probably exist, it may therefore

Fig. 4. Light (A) and electron (B) micrographs of neointimal thickenings in the rat carotid artery five weeks after balloon injury. In the light micrograph,
NI marks the neointima, M the media, and A the adventitia. In the electron micrograph, a contractile SMC with a cytoplasm dominated by actin filaments
(F) is shown. C: collagen fibrils (cross-sectioned); E: elastic fibers; M: mitochondria; N: nucleus. Bars: A, 50 um; B, 1 um.
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be too early to exclude the importance of SMC
multiplication in the formation of neointimal plaques in
humans. Moreover, a variety of polypeptide mitogens
and other molecules that stimulate growth of animal as
well as human SMCs have been identified (Bobik and
Campbell, 1993; Libby and Ross, 1996). Testing of
growth-promoting activity is usually done in vitro.
Nevertheless, it has been demonstrated that systemic or
local perivascular administration of PDGF (Jawien et al.,
1992) and bFGF (Cuevas et al., 1991; Lindner et al.,
1991) stimulates SMC replication in injured arteries. In
addition, treatment of balloon catheter injured animals
with antibodies against PDGF (Ferns et al., 1991;
Jackson et al., 1993; Rutherford et al., 1997) and bFGF
(Lindner and Reidy, 1991; Jackson and Reidy, 1993;
Rutherford et al., 1997) or a PDGF receptor tyrosine
kinase inhibitor (Mylldrniemi et al., 1997) was found
to inhibit neointimal hyperplasia, apparently by
neutralization of endogenous growth factors.

One problem in interpreting experiments of this type
is that molecules such as PDGF and bFGF act both as
mitogens and chemoattractants (see above). Hence, it
may be hard to discriminate between these effects. In the
case of PDGF and bFGF mobilized from the subendo-
thelial matrix or released from degranulating platelets
and damaged endothelial cells, the first effect is
presumably to stimulate migration of SMCs into the
intima. The subsequent proliferation of SMCs at this site
may be driven either by factors from the sources just
mentioned or by factors produced by the cells in the
neointima and acting in an autocrine or paracrine
manner. In support of the latter possibility, both PDGF
and PDGF receptors were shown to be expressed by the
cells in the neointima following balloon injury (Majesky
et al., 1990; Okazaki et al., 1992; Lindner et al., 1995;
Uchida et al., 1996; Panek et al., 1997). Moreover, the
PDGF receptors are activated and display a peak in
tyrosine phosphorylation one to two weeks after the
operation (Abe et al., 1997). In a similar manner, both
bFGF and bFGF receptors are found in the forming
neointima (Olson et al., 1992; Lindner and Reidy, 1993).
Albeit at varying levels, PDGF (Barrett and Benditt,
1988; Wilcox et al., 1988; Rekhter and Gordon, 1994a;
Murry et al., 1996) and bFGF (Brogi et al., 1993;
Hughes et al., 1993) are also expressed in human athero-
sclerotic plaques. Furthermore, production of PDGF in
the arterial wall after in vivo gene transfer was shown to
induce neointimal thickening by stimulation of SMC
migration and proliferation (Nabel et al., 1993; Pompili
et al., 1995).

Transforming growth factor-B1 (TGF-81) is another
factor that has been found important in the reaction of
the vessel wall to endothelial damage. Thus, both medial
and neointimal SMCs in injured arteries were
demonstrated to express TGF-B81 (Majesky et al., 1991,
Wolf et al., 1994). In addition, treatment of balloon
catheter-injured animals with TGF-31 was found to
enhance neointimal growth by stimulation of SMC
proliferation and extracellular matrix production

(Majesky et al., 1991; Kanzaki et al., 1995), whereas
treatment with antibodies against TGF-B1 had the
opposite effect (Wolf et al., 1994). Other examples of
factors that have been found to be expressed in damaged
arteries and could be significant in promoting SMC
proliferation include insulin-like growth factor-1
(Khorsandi et al., 1992; Hayry et al., 1995), heparin-
binding epidermal growth factor-like growth factor
(Nakata et al., 1996), interleukin-1 (Moyer et al., 1991),
and tumor necrosis factor-a (Tanaka et al., 1996).

Secretion of extracellular matrix components

Secretion of extracellular macromolecules is an
integral part in the phenotypic modulation of the SMCs
following vascular injury and plays a crucial role both in
the early migratory and proliferative phase of neointimal
growth and the later phase distinguished by deposition of
a collagen- and elastin-rich matrix around the cells
(Wight, 1996). One molecule that lately has attracted
much attention as a stimulus of SMC migration is
osteopontin, an RGD-containing and strongly acidic
glycoprotein (Giachelli et al., 1995). It is expressed by
SMCs in association with the phenotypic modulation in
primary culture and deposited extracellularly in a
fibrillar pattern (Hultgdrdh-Nilsson et al., 1997). It
interacts with o B3and other integrins and promotes
adhesion, spreading, and migration of cultured SMCs
(Liaw et al., 1994, 1995; Yue et al., 1994). In vivo,
osteopontin is produced at raised levels in the neointima
of balloon injured rat arteries (Giachelli et al., 1993; De
Blois et al., 1996; Wang et al., 1996) and treatment of
the animals with antibodies against osteopontin was
found to inhibit the growth in size of the neointima
(Liaw et al., 1997). In human atherosclerotic and
restenotic lesions, osteopontin is expressed not only by
SMCs but also by endothelial cells and macrophages,
and increased levels of osteopontin appear in plasma
after angioplasty (Ikeda et al., 1993; O’Brien et al.,
1994; Panda et al., 1997).

Other molecules that are synthesized by SMCs after
vascular injury and have been proposed to support their
migration are tenascin, a large hexameric glycoprotein
(Hedin et al., 1991; Hahn et al., 1995), thrombospondin,
a trimeric glycoprotein also released by degranulating
platelets (Miano et al., 1993b), and collagen type VIII, a
network-forming collagen (Bendeck et al., 1996b;
Sibinga et al., 1997). Hyaluronan (Riessen et al., 1996),
a glycosaminoglycan component of many extracellular
matrices, and CD44 (Jain et al., 1996), a cell surface
proteoglycan and the principal receptor for hyaluronan,
likewise show high levels of expression in injured
arteries and have been implicated in SMC migration and
proliferation. Two members of the syndecan family of
transmembrane heparan sulfate proteoglycans,
syndecan-1 and syndecan-4 (ryudocan), also demon-
strate an early rise in expression following endothelial
denudation and may act by binding mitogens such as
bFGF to the surface of the SMCs (Nikkari et al., 1994;
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Cizmeci-Smith et al., 1997). As a part of the vessel wall
response to damage, the phenotypically modified SMCs
of the media and the developing neointima further
manufacture fetal forms of fibronectin containing ED-A
and ED-B (Glukhova et al., 1989; Bauters et al., 1995;
Dubin et al., 1995). Directly after the loss of the
endothelial barrier, plasma fibronectin is also deposited
in the intima and the inner portions of the media
(Thyberg et al., 1997a). As mentioned previously, this
layer of fibronectin may help to bring about a change in
phenotype of the SMCs inside the openings in the
internal elastic lamina and to create a chemotactic
gradient along which these cells can migrate into the
intima (Fig. 2). In a similar manner, and especially
following deeper vascular injury, fibrin thrombi may
also form and promote neointima growth (Bosmans et
al., 1997).

During the early stages of intimal thickening the
extracellular matrix is scanty, but following the peak in
SMC proliferation collagen fibrils and elastic fibers take
up a gradually increasing part of the tissue as judged
morphologically (Thyberg et al., 1995). Accordingly,
mRNA for procollagen type I and tropoelastin were
found to be expressed at high levels in the neointima two
weeks after balloon injury of the rat carotid artery
(Majesky et al., 1992; Nikkari et al., 1994). In a rabbit
model of restenosis, a significant increase in collagen,
elastin and proteoglycan synthesis was likewise noted
one to two weeks after injury (Strauss et al., 1994).
Moreover, both in rats and rabbits it has been
demonstrated that maximal tropoelastin expression in
neointimal SMCs occurs after cessation of DNA
synthesis, confirming that the peaks in cell replication
and extracellular matrix secretion are separated in time
(Belknap et al., 1996; Aoyagi et al., 1997). Similar
conclusions have been reached in studies on collagen
secretion in human atherosclerotic plaques (Rekhter and
Gordon, 1994b; Gordon and Rekhter, 1997). Nonethe-
less, it may to a large extent be the same substances that
are responsible for stimulation of cell proliferation and
extracellular matrix production. Thus, growth factors
like PDGF, bFGF, and TGF- B1 have been found to
affect both of these processes (Bobik and Campbell,
1993). As discussed above, such factors are produced
and sequestered locally in the injured vessel and may act
here over an extended period of time (Vlodavsky et al.,
1991; Medalion et al., 1997; Taipale and Keski-Oja,
1997).

Redifferentiation of smooth muscle cells and
endothelial regeneration

Following endothelial denudation, the initial change
in phenotype in the media, the migration into the intima,
and the stages of cellular proliferation and secretion of
extracellular matrix components, the SMCs of the newly
formed and thickened intima eventually readopt a
contractile phenotype. This is observed structurally as an
increase in the fractional volume of myofilaments and

and a concurrent decrease in the fractional volume of
secretory organelles (Griinwald et al., 1987, Manderson
et al., 1989; Thyberg et al,, 1995). At the same time, the
expression of smooth muscle a-actin (Kocher et al.,
1991; Thyberg et al., 1997a) and smooth muscle myosin
(Aikawa et al., 1997) is augmented. However, it is not
known if the redifferentiated intimal SMCs are fully
equivalent to the cells in the normal arterial media. In
any case, it is evident that the SMCs have a remarkable
ability to shift phenotype in a reversible manner.

At least in part, the redifferentiation of the
neointimal SMCs may be related to the regeneration of
the endothelial cell layer and the restoration of a
permeability barrier between the blood and the vessel
intima. Thus, a comparison of balloon-injured rat carotid
and femoral arteries has revealed that the more rapid
reformation of the endothelium in the latter vessel is
accompanied by a faster resumption of a contractile
phenotype of the SMCs and a less prominent thickening
of the intima (Thyberg et al., unpublished observations).
SMCs of injured as well as atherosclerotic arteries have
been found to produce endothelial cell mitogens such as
bFGF (Olson et al., 1992; Brogi et al., 1993; Hughes et
al., 1993; Lindner and Reidy, 1993) and VEGF
(Couffinhal et al., 1997; Ruef et al., 1997; Tsurumi et al.,
1997) and this could be an important stimulus of
endothelial regeneration. However, in the case of VEGF
partly contradictory observations have been made. Thus,
no clear effect on endothelial cell replication was noted
after intra-arterial infusion and it was suggested that this
factor may not be a mitogen for large-vessel endo-
thelium in vivo (Lindner and Reidy, 1996).

Pharmacological treatment

In view of its central role in the development of
atherosclerotic and restenotic lesions, the vascular SMC
has found broad interest as a target for pharmacological
therapy (Jackson and Schwartz, 1992; Bobik and
Campbell, 1993; Bauters et al., 1996). Two principal
approaches for drug design can be envisioned, to
interfere either with the transition of the cells from a
contractile to a synthetic phenotype or the resulting
ability to migrate, proliferate, and secrete extracellular
matrix components. However, these steps in the
modification of the SMCs are closely interconnected and
usually not kept apart in the evaluation of drug effects.
In the first case, the treatment will mainly be preventive
in character. In the second case, it may also serve to halt
the progress of the disease process. As examples of
substances that have been reported to inhibt neointimal
thickening after vascular injury in laboratory animals,
the following can be mentioned: heparin (Clowes and
Clowes, 1985; Pukac et al., 1991; Lindner et al., 1992),
matrix metalloproteinase inhibitors (Bendeck et al.,
1996a; Zempo et al., 1996), tyrosine kinase inhibitors
(Fukumoto et al., 1996; Golomb et al., 1996;
Mylldrniemi et al., 1997), growth factor antibodies
(Rutherford et al., 1997), angiotensin converting enzyme
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inhibitors and angiotensin receptor antagonists (Powell
et al., 1989; Kauffman et al., 1991; Prescott et al., 1991),
mevalonate and cholesterol synthesis inhibitors
(Gellman et al., 1991), calcium channel blockers
(Schmitt et al., 1995), and microtubule inhibitors (Axel
et al., 1997). In spite of the positive effects in
experimental models, only limited success has so far
been obtained in trials to reduce the incidence of
restenosis in humans (Bauters et al., 1996).

In recent years, increasing attention has also been
paid to the application of gene therapy for vascular
disease (Finkel and Epstein, 1995; Feldman et al., 1996;
Gibbons and Dzau, 1996; Nabel and Nabel, 1996). This
approach may be of particular interest in the prevention
of restenosis after angioplasty, a process that is initiated
by tissue damage in connection with a surgical
procedure and develops over a limited period of time. In
this case, antisense oligonucleotides or recombinant
genes are transferred to the vasculature in an attempt to
suppress the function of specific genes. So far, the main
object of this work has been to inhibit SMC proli-
feration. The probes that have been used for this purpose
include antisense oligonucleotides targeting the PDGF B-
receptor (Sirois et al., 1997), the proto-oncogenes c-myc
(Biro et al., 1993) and c-myb (Simons et al., 1992),
cyclin G1 and the cyclin-dependent kinases cdc2 and
cdk2 (Abe et al., 1994; Zhu et al., 1997), proliferating
cell nuclear antigen (Speir and Epstein, 1992), and the
transcription factors E2F (Morishita et al., 1995) and
NF-kB (Autieri et al., 1995). Other examples of
constructs that have been utilized are recombinant genes
encoding cytotoxic fusion proteins binding to growth
factor receptors (Pickering et al., 1993; Farb et al.,
1997), the cyclin-dependent kinase inhibitor p27 (Chen
et al., 1997b), a constitutively active form of the retino-
blastoma protein (Chang et al., 1995), enzymes making
the cells sensitive to ganciclovir (Ohno et al., 1994) or 5-
fluorocytosine (Harrell et al., 1997), and B-interferon
(Stephan et al., 1997). The animal studies described
above provide a promising basis for the use of gene
transfer in the treatment of human vascular disease.
However, several details need to be refined before this
can become a clinical routine.
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