Extracellular matrix in renal cell carcinomas


  • Jouni Lohi
  • I. Leivo
  • J. Oivula
  • V. P. Lehto
  • I. Virtanen


extracellular matrix, basement membrane, integrins, growth factors


Extracellular matrix (ECM) may be divided into interstitial matrix and the basement membrane (BM). ECM influences a variety of epithelial cell behaviours, including proliferation, differentiation, and morphogenesis, maybe most widely studied in kidney morphogenesis. In carcinomas, including renal cell carcinomas (RCCs), these properties and interactions of cells with interstitial matrix and BM are disturbed. As a carcinoma with a tendency to spread to distant sites, RCC is an interesting target for the study of epithelialstromal interactions. Among interstitial collagens, type V1 collagen appears to be widely distributed in RCCs. Also EDA-fibronectin (EDA-Fn) as well as tenascin-C (Tn) are important stromal components especially in poorly differentiated carcinomas. BMs of RCC islets and those of tumor blood vessel endothelia may merge in poorly differentiated carcinomas. As a dynamic component of BMs, laminins (Ln) are important in kidney development and RCC progression. Type IV collagen and nidogen, other components of BMs in RCCs, are produced by stromal as well as epithelial cells. ECM proteins may function in RCC progression by binding and regulating the activity of growth factors e.g. transforming growth factor B1 and basic fibroblast growth factor. Also the expression of cell surface receptors for ECM is disturbed in RCCs. At least a, integrin (Int) and CD44 emerge in renal epithelial cells during malignant transformation. Papillary renal neoplasms differ from RCCs by cell adhesion receptor expression and BM composition as well as by ECM avascularity and capacity to bind growth factors, thus suggesting a distinct property for this renal tumor.




Invited Reviews