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Summary. An important character of the eye is
transparency, so intraocular neovascularization, which is
fragile and likely to result in hemorrhage, would cause a
functional disorder of the eye and contribute to loss of
vision associated with such diseases as retinopathy of
prematurity, diabetic retinopathy, retinal vein occlusion,
and age-related macular degeneration. Recently interest
in the mechanisms of intraocular neovascularization has
increased, and the mechanisms have been gradually
elucidated using several in vitro and in vivo angio-
genesis models. Blood vessels in the eye are composed
of, and surrounded by, various types of cells that
produce multiple factors. Neovascularization is regulated
by complex interactions among these angiogenic factors,
angiostatic factors, and adhesion molecules, and some of
these angiogenesis-related molecules have also been
suggested as new targets for novel therapeutic agents of
intraocular neo-vascularization. This review focuses on
in vivo representative angiogenesis models of the
corneal pocket model and the model of oxygen-induced
retinopathy, and discusses the role of some angiogenesis-
related factors and adhesion molecules in intraocular
neovascularization.
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Introduction

Angiogenesis, the formation of new capillary blood
vessels, is essential for development, tissue regeneration,
and remodeling. Angiogenesis also accompanies
pathological conditions, including tumor growth,
rheumatoid arthritis, psoriasis, and diabetic retinopathy
(Folkman, 1995). Intraocular neovascularization is a
major cause of blindness associated with such diseases
as retinopathy of prematurity, diabetic retinopathy,
retinal vein occlusion, and age-related macular
degeneration (Diabetic Retinopathy Study Research
Group, 1981; Brown et al., 1987; Prost, 1988; Moss et
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al., 1994; Thylefors et al., 1995). Retinopathy of
prematurity occurs in premature neonates. In the
premature baby the retina remains incompletely
vascularized at the time of birth. Abnormal new
proliferating vessels develop at the junction of
vascularized and avascular retinas. Diabetic retinopathy
is the most frequent cause of blindness in individuals of
working age. In patients with diabetes mellitus, retinal
capillary occlusions develop, creating areas of ischemic
retina followed by neovascular proliferations from pre-
existing retinal venules. Occlusion of the central or
branch retinal vein induces hemorrhage, edema,
exudates, and nonperfused retina followed by neo-
vascularization mainly in adulthood. Age-related
macular degeneration is a major cause of visual loss in
persons over 65 years old. In age-related macular
degeneration, neovascularization develops from
choroidal vasculature, and extends into the subretinal
space in the macula, the area of retina responsible for
central vision. The neovascularization associated with
these disorders commonly involves increased
permeability of the retinal vasculature resulting in
transduction of serum components into the retina and
visual loss from macular edema. In addition, the
neovascularization itself can lead to visual loss due to
the fragility of the new vessels resulting in vitreous
hemorrhage or due to progressive fibrovascular
proliferation and contraction that may lead to macular
traction, traction retinal detachment or rhegmatogenous
retinal detachment (Patz, 1980; Aiello, 1997).

Recently the interest in the mechanisms of intra-
ocular neovascularization has increased. No single
growth factor acts alone to cause intraocular neo-
vascularization. Neovascularization is induced by
complex interactions among multiple angiogenic factors,
angiostatic factors, and adhesion molecules. In this
review, we focus on the mechanisms of intraocular
neovascularization in which a variety of factors interact.

In vivo angiogenesis model

To understand the precise mechanisms of intraocular
neovascularization developing in vivo and in vitro
angiogenesis model systems is important, and so far
several angiogenesis model systems have been
developed. Among them, the corneal pocket model and
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the model of oxygen-induced retinopathy are
representative models of angiogenesis in vivo and we
mainly used those models to investigate the angiogenic
properties of angiogenic factors.

The corneal pocket model (Fig. 1) is one of the most
common and useful model systems of angiogenesis,
because the cornea is a transparent avascular substratum
in which vessels originate from a distance, the
corneoscleral limbus, thus permitting monitoring and
measurement of the progress of new blood vessel
growth. In this model, angiogenic factors are
incorporated into pellets (ethylene-vinyl-acetate or
hydron pellets) and are implanted into the pockets
produced in the cornea of mice, rats, or rabbits. After

initial looping of limbal capillaries, enlargement and
extension of the loops into the cornea occurs.
Subsequently, vascular sprouts appear at the apices of
the loops, a vascular network develops with the
differentiation of arterial and venous branches, and
vessels continue to grow toward the pellets. In mice and
rats, after 5-7 days, we can measure the neovasculari-
zation from the limbus to the pellets induced by those
factors (Yoshida et al., 1997, 1998a) .

The model of oxygen-induced retinopathy (Fig. 2)
has come into wide use as a model of retinal angio-
genesis recently. In this model, neonatal animals are
exposed to hyperoxia, resulting in obliteration of the
posterior retinal vessels. The animals are then returned

Fig. 1. Biomicroscopic photographs of rat corneas 6 days after implantation of EVA pellets containing CINC (50 ng) (A), bFGF (50 ng) (B}, or control
buffer (C). A and B. Cornea demonstrates growth of vessels from the corneoscleral limbus toward the pellet. C. No neovascularization is apparent.
Bar: 500 um. Reproduced, with permission, from Yoshida et al.: The role of NF-kB in retinal neovascularization in the rat: possible involvement of
cytokine-induced neutrophil chemoattractant (CINC), a member of the interleukin-8 family. J. Histochem. Cytochem. 46, 429-436, 1998.

Fig. 2. Fluorescein-dextran-perfused, flat-mount retinas from animals exposed to room air or hyperoxia. A. The retina from postnatal day 17 mouse
maintained continuously under normoxic conditions. B. The retina from the mouse exposed to 75% oxygen for 5 days (from postnatal day 7 to 12) and
then maintained in room air for 5 days. Neovascular responses are apparent at the junction between the perfused and the nonperfused region of the

retina (arrows). Bar: 200 um.
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to room air (or relatively low concentration of oxygen),
which is presumed to cause relative hypoxia of the
nonperfused retina, producing a neovascular response. In
the past, many investigators have attempted to develop
an animal model of oxygen-induced retinopathy with
variable success (Patz et al., 1953; Michaelson et al.,
1954; Patz, 1954; Ashton, 1968). As the interest in
neovascular ocular diseases has increased in general
recently, interest in animal models of proliferative
retinopathy has received much attention again. Penn et
al. (1993) demonstrated that retinal neovascularization is
induced in neonatal rats exposed to periodically varying
oxygen concentrations. Smith et al. (1994) reported an
improved method to induce retinal neovascularization in
neonatal mice. They allowed their newborn mice to live
in room air for the first 7 days of life to permit the
hyaloid vascular system to regress. Then, on day 7, the
newborn mice were exposed to 75% oxygen for 5 days
followed by room air. They found that 100% of the
neonatal mice treated in this way developed preretinal
neovascularization .

Factors affecting angiogenesis

Michaelson (1948) and Ashton et al. (1954)
postulated that retinal neovascularization was caused by
release of a vasoformative factor from the retina in
response to hypoxia. Because of these initial hypotheses,
it has become widely accepted that retinal hypoxia
induces the release of factors that influence new blood
vessel growth. Recently, development of new blood
vessels is thought to depend upon a balance of
angiogenic factors and angiostatic factors. Angiogenic
factors, including vascular endothelial growth factor/
vascular permeability factor (VEGF/VPF), basic fibro-
blast growth factor (bFGF), insulin-like growth factor-I
(IGF-I), tumor necrosis factor a (TNF-ct), angiotensin II
and platelet-derived growth factor (PDGF) have been
implicated in the development of intraocular neo-
vascularization (Schultz and Grant, 1991; Robbins et al.,
1994; Berka et al., 1995; Pierce et al., 1995; Spranger et
al., 1995). In addition, we demonstrated that interleukin-
8 (IL-8), a member of the CXC chemokine family
having potent angiogenic properties, may have an
important role in retinal neovascularization (Yoshida et
al., 1998b).

Transforming growth factor-p (TGF-) is known to
have an angiostatic property in the eye (Pfeiffer et al,,
1997). Other factors, including angiostatin, endostatin,
and thrombospondin-1, may have potential angiostatic
properties in the eye (Folkman, 1995; O’Reilly et al.,
1997). In addition, endothelial cells interact with and
respond to changes in the extracellular matrix through
cell surface receptors called adhesion molecules.

Vascular endothelial growth factor/vascular
permeability factor (VEGF/VPF)

VEGEF/VPF is an endothelial cell-specific mitogen

that was identified and cloned in several studies (Senger
et al., 1983; Ferrara and Henzel, 1989; Keck et al., 1989;
Leung et al., 1989). It has two main activities: increased
vasopermeability and induction of angiogenesis (Senger
et al., 1983; Keck et al., 1989). VEGF/VPF is a highly
conserved homodimeric glycoprotein existing as four
isoforms in the human as a result of alternative RNA
least two of these isoforms are freély dlffusable
molecules within the eye. The novel VEGF family,
VEGF-B and VEGF-C, also have the ability to promote
proliferation of vascular endothelial cells, and are
located in the retina (Takagi et al., 1998). VEGF/VPF is
produced by a number of ocular cells, including retinal
vascular endothelial cells, pericytes, glial cells, ganglion
cells, retinal pigment epithelial cells, and invasive
leukocytes (Adamis et al., 1993; Simorre-Pinatel et al.,
1994; Aiello et al., 1995a; Nomura et al., 1995; Lutty et
al., 1996 . Hypoxia upregulates VEGF/VPF, owing both
to increased transcription mediated by hypoxia-inducible
factor -1 and an increase in VEGF/VPF mRNA stability
dependent on the 3’ region of the mRNA (Semenza et
al., 1998).

Fms-like tyrosine kinase (Flt-1), kinase insert
domain containing receptor/fatal liver kinase-1 (KDR/
Flk-1), fms-like tyrosine kinase-4 (Flt-4), and a soluble
type of Flt-1 are receptors for the VEGF family. The
expression of Flt-1 is predominant in bovine retinal
pericytes and KDR/Flk-1 is expressed predominantly in
retinal endothelial cells in vitro (Takagi et al., 1996).
KDR/FIk-1 promoter activity is modulated by Spl and
Sp3 (Hata et al., 1998). In vivo, increased KDR/FIk-1
and Flt-1 mRNA levels are found in ganglion cells and
the inner and outer nuclear layers in diabetic animals
(Hammes et al., 1998).

The ocular role of VEGF/VPF has been investigated
in a variety of animal models. Tolentino et al. (1996)
demonstrated that intravitreal injection of VEGF/VPF
induced retinal hemorrhage, edema, venous beading,
capillary occlusion with ischemia, microaneurysm
formation, and intraretinal vascular proliferation that are
common to diabetic retinopathy and other ischemic
retinopathies. Over-expression of VEGF in the retina is
sufficient to cause intraretinal and subretinal neo-
vascularization (Okamoto et al., 1997). In oxygen-
induced retinopathy, VEGF/VPF mRNA and protein
production increases rapidly following the induction of
hypoxia (Pierce et al., 1995, Vinores et al., 1997). The
use of antisense phosphorothioate oligodeoxynucleotides
against VEGF/VPF and human FIt-1 or murine
KDR/Fik-1 chimeric protein inhibits retinal neo-
vascularization and VEGF/VPF synthesis in the oxygen-
induced retinopathy model (Aiello et al., 1995b;
Robinson et al., 1996).

Intraocular VEGF/VPF concentrations increase in
patients with active intraocular neovascularization
arising from proliferative diabetic retinopathy, central
retinal vein occlusion, retinopathy of prematurity, and
subretinal neovascularization (Aiello et al., 1994; Wells
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et al., 1996). In these studies, patients who had no
neovascular disorder, no active neovascularization
within the eye or who once had active neovasculari-
zation that was now quiescent all had low concentrations
of intraocular VEGF/VPF. In the early stage of diabetic
retinopathy, VEGF/VPF production also increases
(Amin et al., 1997) . Because we cannot find a non-
perfused area in this stage, we believe VEGF/VPF is
also induced by factors other than hypoxia. VEGF/VPF
may be induced by other cytokines such as TNF-a and
IL-1p produced by invasive leukocytes (Yoshida et al.,
1997). Another candidate is advanced glycated end
product (AGE), which induces VEGF/VPF production in
retinal pigment epithelial cells, vascular endothelial
cells, and glial cells (Murata et al., 1997). Vinores et al.
(1997) showed that VEGF/VPF was also increased in
human and experimental ischemic and non-ischemic
disorders in which blood retinal barrier breakdown is
known to occur, suggesting that VEGF/VPF may also
contribute to blood retinal barrier breakdown in addition
or in association with its role of inducing neo-
vascularization. Furthermore, Gerhardinger et al. (1998)
demonstrated that in the retina of individuals without
diabetes mellitus and retinal diseases several types of
cells constitutively synthesize VEGF/VPF, suggesting
that VEGF/VPF may have actions affecting the
modulation of neuronal function or homeostasis in the
retina.

The choroidal neovascular membrane removed from
human patients with age-related macular degeneration
shows evidence of VEGF/VPF expression (Lopez et al.,
1996). In choroidal neovascularization in animal models,
retinal pigment epithelial cells, Miiller cells, ganglion
cells, and invasive macrophages show VEGF expression
(Ishibashi et al., 1997).

Therefore, VEGF/VPF may have an important role
in the development of intraocular neovascularization,
and it may provide a target for therapeutic intervention
in retinal neovascularization.

Fibroblast growth factor (FGF)

In the FGF family, bFGF and acidic FGF (aFGF),
single-chain proteins of approximately 140 amino acids,
are well known for angiogenic factors. FGF is produced
by many cells, including retinal pigment epithelial cells,
vascular endothelial cells and glial cells. Both bFGF and
aFGF have no secretory signaling sequence typical of
proteins secreted by the endoplasmic reticulum-Golgi
apparatus (Mignatti et al., 1992). Basic FGF influences
vascular endothelial cells by both paracrine and
autocrine control. In vitreous fluids from patients with
proliferative diabetic retinopathy, bFGF concentration
increases compared to controls (Sivalingam et al., 1990;
Boulton et al., 1997). Basic FGF is expressed in
choroidal neovascular membrane from patients with age-
related macular degeneration (Frank et al.; 1996;
Kitaoka et al., 1997).

However, when bFGF-deficient mice were

compared with wild-type mice in an oxygen-induced
retinopathy model, bFGF-deficient mice developed the
same amount of retinal neovascularization as wild-type
mice (Ozaki et al., 1998). In addition, mice with bFGF
overexpression in retinal photoreceptors showed no
significant difference in the amount of retinal neo-
vascularization compared with wild-type mice in the
same model. In ocular neovascularization, the
importance of bFGF may be less than previously
assumed.

Interleukin-8 (IL-8)

IL-8, a chemotactic cytokine for T lymphocytes and
neutrophils (Eckmann et al., 1993; Jung et al., 1995;
Rasmussen et al., 1997) is the most well known CXC
chemokine and is induced by various stimuli, including
TNF-a, IL-1f, and hypoxia (Kasahara et al., 1991;
Karakurum et al., 1994; Yoshida et al., 1997). IL-8 has
been shown to be able to mediate both in vitro
endothelial cell chemotactic and proliferative activity
(Koch et al., 1992), as well as in vivo angiogenesis
(Strieter et al., 1992), and it also contributes to such
angiogenesis-dependent disorders as rheumatoid
arthritis, psoriasis, wound repair, malignant melanoma,
bronchogenic carcinoma, and diabetic retinopathy (Koch
et al., 1992; Endo et al., 1994; Nickoloff et al., 1994;
Smith et al., 1994; Elner et al., 1995; Singh et al., 1995;
Strieter et al., 1995). We showed that the IL-8
concentration in vitreous fluids from patients with such
active retinal neovascularization as proliferative diabetic
retinopathy and retinal vein occlusion is significantly
higher than that for individuals with quiescent
neovascularization or without a neovascular disorder
(Yoshida, et al., 1998b). The predominant risk factor for
the development of intraocular neovascularization is the
extent and duration of retinal ischemia (ischemic drive)
(Shimizu et al., 1981; Magargal et al., 1982). In patients
with proliferative diabetic retinopathy, retinal ischemia
generally begins in the midperipheral retina, and
retinopathy progresses with a relatively low ischemic
drive (Magargal et al., 1982). In contrast, the avascular
region in patients with retinal vein occlusion tends to
appear rapidly and to spread extensively. In our study,
the IL-8 concentration in vitreous fluids from patients
with retinal vein occlusion was higher than that for
patients with active proliferative diabetic retinopathy
(Yoshida et al., 1998b. The consistency of the clinical
observations with the IL.-8 concentration implicates IL-8
in ischemia-associated retinal neovascular diseases, such
as proliferative diabetic retinopathy and retinal vein
occlusion. The greater the ischemic drive in the retina,
presumably the greater the extent of hypoxia
experienced by retinal cells and the greater the amount
of IL-8 produced. Furthermore, vitreous fluids
containing a high concentration of endogenous IL-8
induced angiogenesis in vitro. We detected IL-8
expression immunohistochemically in vascular
endothelial cells and in glial cells in the retinas of
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patients with neovascularization. Thus, retinal glial cells
and endothelial cells are likely sources of IL-8 in the
ocular fluid of patients with ischemic retinal diseases.

The promoter of the IL-8 gene contains potential
binding sites for the transcription factor NF-xB
(Matsusaka et al., 1993; Mukaida et al., 1994; Oliveira et
al., 1994). NF-xB, which was originally identified as a
heterodimeric complex of 50- and 65-kDa (p65) subunits
(Baeuerle, 1991), is central to the regulation of
numerous inflammatory and proliferative response genes
(Lenardo and Baltimore, 1989; Grilli et al., 1993; Liao et
al., 1993, 1994). NF-kB may regulate the initiation of
angiogenesis in vitro (Shono et al., 1996; Stoltz et al.,
1996). IL-8 produced through NF-xB activation
contributes to TNF-a-induced angiogenesis (Yoshida et
al., 1997). In addition, activated NF-kB and cytokine-
induced neutrophil chemoattractant (CINC), a rat
homolog of IL-8 or Gro, are both expressed in retinal
vascular endothelial cells and glial cells in the oxygen-
induced retinopathy (Yoshida et al., 1998a). We also
demonstrated that CINC has an angiogenic property
using the corneal micropocket assay. In bovine retinal
glial cells in vitro, hypoxia induced NF-kB activation
and IL-8 gene expression, and both these effects were
inhibited by pyrrolidine dithiocarbamate, a specific
inhibitor of NF-kB activation (Yoshida et al., 1998b).
Thus, hypoxia-induced expression of IL-8, mediated by
activation of NF-xB, in retinal glial cells and vascular
endothelial cells may be important in the pathogenesis of
retinal neovascularization. In addition to the IL-8 gene,
NF-kB regulates many other angiogenesis-related genes,
including those encoding TNF-a, vascular cell adhesion
molecule-1 (VCAM-1), and intercellular adhesion
molecule-1 (ICAM-1) (Bacuerle and Henkel, 1994)
Therefore, NF-kB, in addition to IL-8 and VEGEF, may
also provide a target for therapeutic intervention in
retinal neovascularization.

Inflammatory cytokines

Monocytes/macrophages are known to produce a
variety of cytokines, such as TNF-a, IL-1p and bFGF,
upon activation and are important in angiogenesis.
Macrophage-derived TNF-a may trigger angiogenesis
by inducing IL-8, VEGF, or bFGF in an autocrine or
paracrine manner (Yoshida et al., 1997). In addition,
tumor-associated monocyte/macrophage infiltration
correlates with tumor angiogenesis in individuals with
invasive breast cancer (Leek et al., 1996), and the
accumulation of monocytes/macrophages that produce
TNF-a and bFGF is associated with angiogenesis after
femoral artery occlusion in the rabbit (Arras et al.,
1998). Monocytes/macrophages also participate in
neovascular disorders, such as diabetic retinopathy.
Furthermore concentration of monocyte chemoattractant
protein-1 (MCP-1) and TNF-a also increase in vitreous
fluids from patients with proliferative diabetic
retinopathy (Elner et al., 1995; Spranger et al., 1995).
MCP-1, a CC chemokine, attracts monocytes, T cells,

mast cells, and basophils, and it may also play an
important role in intraocular angiogenesis.

Adhesion molecules and extracellular matrix

Adhesion molecules are important for intraocular
neovascularization. Some adhesion molecules, such as
VCAM-1, ICAM-1, and E-selectin are involved in
diabetic retinopathy. Recently, integrins have also been
demonstrated to play an important role in intraocular
angiogenesis (Brooks, 1996). They are composed of
noncovalently associated o and § chains, and can bind to
an array of extracellular matrix (ECM) components,
including laminin, collagen, fibronectin, thrombo-
spondin, fibrinogen, and vitronectin. The binding of an
integrin to an ECM component sends an intracellular
signal that initiates a variety of endothelial responses,
such as adhesion, migration, proliferation, and apoptosis.
Basic FGF-induced angiogenesis depends on integrin
a,f3 using rabbit corneal assay and chick chorio-
allantoic membrane assay. In contrast, VEGF/VPEF-
induced angiogenesis depends on integrin a,B5
(Friedlander et al., 1995). In oxygen-induced retino-
pathy, the a,-integrin antagonist peptide reduced retinal
neovascularization (Hammes et al., 1996). In this model
the laminin receptor is present (Stitt et al., 1998).
Furthermore, integrin a,f3 is expressed in choroidal
neovascular membranes from patients with age-related
macular degeneration and ocular histoplasmosis
syndrome (Friedlander et al., 1996) and both integrins
a,B3 and o,fB5 are on fibrovascular membranes from
patients with proliferative diabetic retinopathy.

A fragment of matrix metalloproteinase 2 (MMP-2),
comprising the C-terminal hemopexin-like domain,
termed PEX, prevents MMP-2 binding to a,f85 and
blocks cell surface collagenolytic activity. Brooks et al.
(1998) demonstrated that a naturally occurring form of
PEX can be detected in vivo in conjunction with a5
expression during developmental retinal neo-
vascularization, suggesting that it would interact with
endothelial cell B3 where it would serve as a natural
inhibitor of MMP-2 activity, thereby regulating the
invasive behavior of new blood vessels.

Conclusions

Recent work has elucidated the molecules and
mechanisms that induce the development of intraocular
neovascularization. Many studies have demonstrated the
involvement of multiple factors found in association
with tumor-related angiogenesis, such as Tie-1 and Tie-2
in intraocular neovascularization. Because the eye is a
highly differentiated and unique sense organ in which
transparency is very important, intraocular neo-
vascularization may be involved in the factors
characteristic of the eye. However, the mechanisms are
not fully understood and an effective treatment for
retinal neovascularization remains elusive. Current
clinical treatment for active intraocular neo-
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vascularization involves destroying the peripheral retina
by either laser photocoagulation or cryotherapy.
Although often effective, this procedure induces
substantial changes in capillary hemodynamics and in
the quality of vision because of its inherently destructive
property. In patients with very severe neovascularization,
laser alone may not prevent severe visual loss.
Pharmacological therapy for retinal neovascularization
would be a major benefit to patients with intraocular
angiogenic diseases. An improved understanding of
neovascularization may suggest new approaches to
therapy.
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