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Summary. The tenascins are a family of multifunctional
extracellular matrix glycoproteins subject to complex
spatial and temporal patterns of expression in the course
of various organogenetic processes, namely those
involving epithelial-mesenchymal interactions. In the
intestine, the tenascins, in particular tenascin-C, have
been found to be differentially expressed in the
developing and adult small intestinal and colonic mucosa
as well as in neoplasm. While tenascin-C emerges as a
key player likely to be involved in intestinal mucosa
development, maintenance and disease, its exact role in
the regulation of fundamental intestinal cell function(s)
such as proliferation, migration and tissue-specific gene
expression remains however to be established.
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Introduction

The intestine, like many other organs, requires
dynamic and reciprocal epithelial-mesenchymal
interactions for its morphological and functional
development aswell as its maintenance at the adult stage
(Haffen et a., 1989; Yasugi, 1993). One key element in
these interactions is the extracellular matrix (ECM), in
particular, the basement membrane (BM), which is
located at the epithelial-mesenchymal interface (Leblond
and Inoue, 1989; Rosman et al., 1993; Timpl and Brown,
1996). It is now recognized that ECM composition
defines the necessary microenvironment for various
cellular functions, such as adhesion, proliferation,
migration, cell survival and tissue-specific gene
expression, during development and at maturity (Adams
and Watt, 1993; Lloyd Jones et al., 1993; Rosekelly et
a., 1995). In the intestine, a detailed analysis of BM
components such as laminins and type 1V collagens as
well as various BM associated molecules such as
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fibronectin has revealed that most of them are subject to
particular spatial and temporal patterns of expression
(Simon-Assmann et al., 1995; Beaulieu, 1997).
However, one of the most striking examples of
differential expression is tenascin-C. Although present
constitutively in smooth muscle cells, this macro-
molecule was found to be expressed relatively late
during embryonic development (i.e. only after short villi
had formed) in the small intestine while being absent in
the fetal colonic mesenchyme but, in contrast to most
other organs, was detected in their adult counterparts,
being expressed according to an increasing gradient
along the crypt-villus axis and crypt-surface epithelium
axis in the small intestine and colon, respectively.

In this review, we will present an overview of the
structural features and functional properties of tenascin-
C and other members of the family discovered more
recently. We will then discuss what is currently known
about the expression and distribution of these
macromolecules as well as some of their cellular
receptors in the intestine under the normal and
pathological states.

Structural features of tenascins

The tenascins are extracellular matrix glycoproteins
characterized by their multi-branched structure. They
were originally described as CSP (Cell Surface Protein;
Yamada et al., 1975), restrictin (Carter and Hakomori,
1981), GMEM antigen (Bourdon et al., 1983)
myotendinous antigen (Chiquet and Fambrough, 1984),
hexabranchion (Erickson and Inglesias, 1984), J1
glycoprotein (Kruse et d., 1985), and cytotactin (Grumet
et al., 1985) before obtaining their fina designation as
tenascin (Chiquet-Ehrismann et al., 1986).

While some tenascins are homotrimeric, tenascin-C
is a hexamer (Fig. 1). The monomeric glycoprotein,
varying from 180-320 kD, is made up of four distinct
segments. At the most N-terminal portion is a150 amino
acid alpha hdlix. In this segment, four heptad repeats are
flanked by cysteine residues which are responsible for
the joining of three tenascin subunits into a triple
stranded coil (Erickson and Bourdon, 1989) while a
unique cysteine residue flanking this motif, Cys-64, is
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required for the joining of two tenascin trimers (Luczak
et al., 1998). Next to this is the thin proximal segment
made up of EGF-like repeats, the number of which
varies greatly (Nies et al., 1991; Matsumoto et al., 1992;
Fuss et al., 1993). The next area, corresponding to the
thick distal segment, is composed of Fnlll-like repeats.
Their number also varies greatly and depends upon
alternative splicing. In human tenascin-C, it is those
repeats located between Fnlll 5 and 6 (identified as Al-
A4, B, AD2, ADI1, C and D; Fig. 1B) that can undergo
alternative splicing (Erickson and Bourdon, 1989;
Sriramarao et al., 1993; Mighell et al., 1997).
Interestingly, both AD1 and AD2 have been identified
only in tumor-derived cell lines (Sriramarao et al., 1993;
Mighell et al., 1997). The sequence is terminated by a
globular domain homologous to the globular domain of
B3- and y-fibrinogen (Erickson and Bourbon, 1989).
Aside from tenascin-C (Tn-C), four other members
of the tenascin family have been identified and
characterized: tenascin-R (Tn-R), tenascin-X (Tn-X),
tenascin-Y (Tn-Y) and tenascin-W (Tn-W). Tn-C and
Tn-R are very similar in structure and can form
hexabranchion structure (Erickson, 1993a). On the other
hand, it seems that Tn-X and Tn-Y, lacking the cysteine
residue in their C-terminal heptad region essential for the
union of two tenascin trimers, are only synthesized in a
trimeric form (Erickson, 1993a). Tn-R (restrictin, J1
160/180) was recently identified and mapped in man
(Leprini et al., 1996). Mostly restricted to the central
nervous system, this molecule is characterized by a short
EGF-like segment and a unique Fnlll domain (called R1
or A) both of which are subject to alternative splicing,
therefore creating only two different splicing variants
(Pesheva et al., 1989; Norenberg et al., 1995;
Carnemolla et al., 1996). Tn-X is quite different from the
other tenascins. Encoded by the XB gene located on
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Fig. 1. Schematic representation of Tn-C whole molecule and domains.
Tn-C is a hexameric molecule. Each arm comprises a proximal thin
segment, a distal thick segment and a terminal globular domain (A)
which correspond to the EGF-like repeats domain, the fibronectin type
Il repeats domain and the fibrinogen-like domain, respectively (B).
These various domains have been mapped for adhesive and
counteradhesive activities (C).

chromosome 6, the human Tn-X has a EGF-like segment
comparable to Tn-C, but a very long Fnlll-like repeat
segment (Matsumoto et al., 1992; Bristow et al., 1993).
With a subunit of ~500 kD, Tn-X is the largest member
of the family. Tn-Y has only been identified in the
chicken and exhibits unique structural features (Hagios
et al., 1996) while Tn-W could be the zebrafish
equivalent of tenascin-C (Weber et al., 1998).

Functional properties of tenascins

Based on its unique distribution during organo-
genesis, wound healing and in various pathological
conditions including cancer (Chiquet-Ehrismann et al.,
1986), tenascin has generated great interest as a potential
key element in tissue remodeling. While extensive
experimental data convincingly demonstrate the
bioactivity of tenascin in vitro (Chiquet-Ehrismann,
1995a; Crossin, 1996; Mackie, 1997; see also below),
the finding that a total Tn-C knockout mouse can
develop normally (Saga et al., 1992) was received with
deep disappointment. Indeed, although mechanisms of
compensation for the loss of Tn-C have been proposed
(Erickson, 1993b; Chiquet-Ehrismann et al., 1994;
Tucker et al., 1994; Sakakura and Kusakabe, 1994)
while the lack of phenotype itself has been challenged
(Crossin, 1996), this finding has stressed the fact that
until significant developments are made, the
identification of the possible functions of tenascin-C has
to continue to rely on the analysis of their tissue
distribution and from in vitro experiments.

The functional properties reported for tenascins are
numerous and, in several instances, contradictory,
largely depending on the cell type and experimental
conditions used. While it would be beyond the scope of
this review to analyze them in detail (see Chiquet-
Ehrismann, 1993, 1995a; Crossin, 1996; Mackie, 1997
for recent and more in depth reviews), the adhesive and
antiadhesive properties attributed to tenascins, which are
of particular interest in the context of epithelial-
mesenchymal interactions, are becoming better
understood. Indeed, it appears more and more evident
that some domains within the tenascin molecule can
support cell adhesion while others can inhibit cell
attachment to matrix components such as fibronectin and
are thus referred to as being counteradhesive (Erickson,
1993a; Chiquet-Ehrismann, 1995b). As recently
reviewed by Chiquet-Ehrismann (1995a,b) and Crossin
(1996), the counteradhesive activity has been mapped to
two distinct sites, the EGF-like repeats domain and the
fibronectin type III repeats 7 and 8, while important
adhesion sites appears to be located in the fibronectin
type III repeat 3 and in the C-terminal fibrinogen domain
(Fig. 1C). A number of cell surface binding molecules
have been identified including the heparan sulfate side
chain of some proteoglycans (C-terminal fibrinogen
domain), annexin Il (alternatively spliced fibronectin
type III repeats A through D), contactin/F11 and
fibronectin (boundary of the alternatively spliced region
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of the fibronectin type III repeat domain) and integrins
(third fibronectin type III repeat). Integrins identified to
bind tenascin at its third fibronectin type III repeat
include a8bl, a9B1, avB3 and avB6 (Joshi et al., 1993;
Prieto et al., 1993; Yokosaki et al., 1994; Schnapp et al.,
1995; Denda et al., 1998). Interestingly, in contrast to the

other tenascin-binding integrins, a961 recognizes an
IDG containing sequence instead of the classical RGD
motif (Yokosaki et al., 1998).

In such a context where tenascin activity appears to
be the product of the summation of its adhesive and
counteradhesive domains, in conjunction with the

Fig. 2. Expression of Tn-C in the human
intestinal mucosa. Immunolocalization of Tn-
C in the developing small intestine (A) and
colon (B) reveals a similar pattern of
expression in the muscularis mucosa (mm)
while villus cores, which show intense
staining in the small intestine (A), appear
mostly negative in the colon (B). In the adult
small intestine (C) and colon (D), Tn-C is
found predominantly in the muscularis
mucosa (mm) as well as in the epithelial-
stromal interface according to a typical
increasing gradient from the crypt (ce) to the
villus (ve) (C) and the gland (ge) to the
surface (se) (D). (A, B: from Desloges et al.,
1994; C, D: from Beaulieu, 1997, with
permission).
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repertoire of binding proteins and extracellular matrix
proteins expressed by particular types of cells, it is
becoming obvious why, in vitro, cell-tenascin
interactions can modulate in one way or another basic
cell functions such as adhesion, migration, growth and
differentiation.

Tissue distribution of tenascins: the gut paradigm

Analyzing the tissue distribution of tenascins
represents a complementary approach to in vitro
experiments for the identification of possible functions
of this family of extracellular matrix molecules. The
expression of Tn-C, Tn-R and Tn-X in mammals has
been analyzed in detail in a number of tissues and organs
(reviewed in: Chiquet-Ehrismann, 1993, 1995a;
Erickson, 1993a; Sakakura and Kusakabe, 1994;
Crossin, 1996; Mackie, 1997). While Tn-R is
exclusively detected in the central nervous system, more
particularly in oligodendrocytes and neurons, Tn-C and
Tn-X appear to be more widely distributed. Tn-X has
been reported to be predominantly expressed in the
extracellular matrix of muscle cells and blood vessels
while Tn-C appears to be transiently expressed during
embryonic development at various sites, including the
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Fig. 3. T§-C splicing variants of the human small and large intestine.
Reverse transcriptase-polymerase chain reaction amplification of the
tenascin-C splice variants (A) using primers flanking the alternative
splicing region (B), from RNA isolated from 18 week-old fetal jejunum
and colon. The results show 6 distinct products at 230, 530, 790, 150,
1700 and 1900 pb, approximately, for both segments. Negative controls
include omission of reverse transcriptase (-RT) and omission of RNA
(-RNA).

epithelial-mesenchymal interface of most organs studied
such as the mammary gland and the skin, and is
upregulated in the stroma of tumors and in wound
healing. One clear exception to this general pattern of
expression is the gut, where Tn-C remains strongly
expressed at maturity in both human (Beaulieu, 1992;
Riedl et al., 1992) and laboratory animals (Aufderheide
and Ekblom, 1988; Probstmeier et al., 1990). Indeed, as
summarized in Figure 2, for the human, Tn-C is strongly
expressed in most mesodermal derivatives at mid-
gestation (Fig. 2A,B) while in the adult, its distribution
is mainly restricted to smooth muscles and the stromal-
epithelial interface (Fig. 2C, D). As expected from
previous studies in various organs (see above), a number
of Tn-C spliced variants were detected in both fetal
small intestine and colon by RT-PCR (Fig. 3) indicating
that multiple Tn-C isoforms are simultancously
expressed in the gut.

Tn-C in the enteric smooth musculature

Concerning the smooth musculature, the presence of
tenascin-C as a normal extracellular matrix component of
intestinal differentiated muscle cells is well documented
(Aufderheide and Ekblom, 1988; Probstmeier et al.,
1990; Beaulieu et al., 1991; Natali et al., 1991; Beaulieu,
1992; Crossin, 1996). As shown in Fig. 2, tenascin-C is a
prominent component of circular and longitudinal muscle
layers of the muscularis propria as well as of the
muscularis mucosa of both the immature and adult small
intestine and colon. As deduced by Western blotting
analysis, the intestinal musculature contains both the 220
kD and the 320 kD forms of tenascin-C (Beaulieu et al.,
1993a; Desloges et al., 1994; unpublished data). The
function of tenascin-C at this site is still unknown. Given
the adhesive/anti-adhesive property of the molecule, one
may speculate that its presence in the extracellular matrix
of smooth muscle cells contributes to the plasticity of the
tissue (for instance, see Oberhauser et al., 1998). Besides
such mechanical function, there are a number of
observations suggesting that tenascin could be involved
in the regulation of smooth muscle cell growth and/or
differentiation (Hedin et al., 1991; Mackie et al., 1992;
Majesky, 1994) and survival (Lloyd Jones et al., 1997).
In the developing human small intestine, the analysis of
the distribution of tenascin-C in conjunction with -
smooth muscle actin, as determined by means of double
immunofluorescent staining, has revealed the existence
of a potential relationship between tenascin expression
and smooth muscle cell differentiation (Beaulieu et al.,
1993b). It was shown that the early appearance of a-
smooth muscle actin-reactive cells at various sites in the
intestine was almost exclusively observed in regions
already rich in tenascin-C, a process particularly
evident during formation of the muscularis mucosa, a
thin layer of smooth muscle cells delimiting the lower
margin of the mucosa (see Fig. 2). However, direct proof
supporting a role for tenascin-C on intestinal smooth
muscle cell differentiation is still lacking.
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The crypt-villus gradient of Tn-C in the mature small
intestine

The epithelial-stromal interface is the second major
site of tenascin-C expression in the gut. In the human
adult small intestine, the molecule has been detected at
the base of epithelial cells according to an increasing
gradient along the crypt to villus axis (Fig. 2C). It is
pertinent to note that such a preferential expression of
tenascin-C in the upper part of villi has also been
observed in the mouse small intestine (Aufderheide and
Ekblom, 1988; Probstmeier et al., 1990). Interestingly, in
their work, Probstmeier et al. (1990) used immuno-
electron microscopy to reveal that the macromolecule
was present at the basal lamina of villus epithelial cells.
They also provide evidence that human colon adeno-
carcinoma HT-29 cells fail to adhere to tenascin used as
substrate, suggesting that tenascin-C plays a role in
epithelial cell shedding. Conversely, Tn-C may simply
be involved in epithelial cell movement toward the tip of
the villus as suggested more recently (Hashimoto and
Kusakabe, 1997).

Tn-C in the human colon and adenocarcinomas

In the mature normal colon, tenascin-C was found to
be expressed according to a similar gradient of
expression, the molecule being more abundant at the
base of the surface epithelium than around the lower part
of the gland (Fig. 2D). Its expression in adeno-
carcinomas has been well documented over the last 10
years. Overall, there is a good consensus that tenascin-C
is substantially upregulated in the stroma surrounding
the neoplasic cells. Tn-C expression was not found to be
altered in adenomas while it appears to be increased in
most carcinomas studied (Natali et al., 1991; Riedl et al.,
1992, 1997, Sakai et al., 1993; Hauptmann et al., 1995;
Hanamura et al., 1997) according to two distinct patterns
of staining: a subglandular staining pattern predominant
in well-differentiated tumors and a diffuse interstitial
stromal staining pattern predominant in moderate and
poorly differentiated tumors (Sugawara et al., 1991;
Iskaros et al., 1997; Kressner et al., 1997). Interestingly,
it was shown that patients with more Tn-C expression
and those showing the subglandular staining pattern had
better long term survival than those with the diffuse
interstitial staining pattern and/or low Tn-C expression
(Iskaros et al., 1997; Kressner et al., 1997). These data
are consistent with the fact that reduced Tn-C expression
in human colon carcinoma correlates with DNA
aneuploidy and may suggest that Tn-C fulfils a
protective function in preventing tumor invasion
(Sakakura and Kusakabe, 1994), a function likely to be
dependent on the levels of proteolytic activity produced
by the tumor cells (Imai et al., 1994; Siri et al., 1995).

Tn-C in the developing intestine

In the developing human intestine, as well as in that

of other species (Crossin et al., 1986; Autfderheide and
Ekblom,1988; Probstmeier et al., 1990), tenascin-C is
expressed in the mesenchyme according to a unique
spatio-temporal pattern (Beaulieu et al., 1991, 1993a,b;
Desloges et al., 1994). Indeed, in the human small
intestine, tenascin was first detected at 11 weeks of
gestation, which is 1-2 weeks after the formation of
villus rudiments, and was restricted to the connective
tissue at the tip of the villus. At later stages, a
widespread distribution of tenascin-C in the
mesenchyme from the tip of the villus to the base of the
crypts (Fig. 2A) was observed according to a typical
gradient of intensity (Beaulieu et al., 1991, 1993b).
Analysis of the oligomeric forms of intestinal tenascin-C
by Western blotting revealed the presence of three major
components at 320 kD, 220 kD and 200 kD. The two
larger ones were also found in cultured fibroblasts and
most likely correspond to the previously described
variants (Erickson and Bourdon, 1989). The
identification of distinct forms of tenascin in the human
intestine is consistent with the well-known complexity
of expression of this macromolecule in different cell
types as demonstrated at both the molecular and
histological levels (Gulcher et al., 1989; Taylor et al.,
1989, Chiquet-Ehrismann et al., 1991; Siri et al., 1991).
Interestingly, while both the 320 kD and the 220 kD
forms were detected uniformly at all stages of intestinal
development studied (9-20 weeks), the 200 kD
component, barely expressed at 9 weeks, increased by a
factor of ~10 over the same period (Beaulieu et al.,
1993a). This observation is not without precedent since
the expression of molecular forms of tenascin-C variants
was also reported during the development of the mouse
and chick digestive tract (Crossin, 1996; Aufderheide
and Ekblom, 1988; Saga et al., 1991). In the chick
gizzard, there is clear evidence that the expression of
tenascin-C variants is tissue-specific suggesting that the
developmental appearance of a particular variant in this
organ is related to the differentiation of a new type of
tissue (Matsuoka et al., 1990). It is noteworthy that in
the developing human small intestine, the expression of
the 200 kD form correlates well with the accumulation
of immunoreactive tenascin-C in the mesenchyme of the
growing villi during the same period. Analysis of small
intestinal fractions specifically enriched in villi by
Western blot revealed that the 200 kD component is the
major Tn-C form present in the villus (Beaulieu et al.,
1993c). The role of such a villus-predominant form of
tenascin-C, which is also developmentally expressed,
remains to be determined. The expression of this
molecule was also analyzed in the developing human
fetal colon (Desloges et al., 1994). Indeed, a well-known
particularity of the colonic segment is the transient
presence of villi between 10 and 25 weeks of gestation,
which, from a functional and morphological point of
view, are similar to those present in the small intestine
(Ménard and Beaulieu, 1994). Surprisingly, colonic villi
were found to be devoid of immunoreactive tenascin-C
at all stages studied (Fig. 2B) although the smooth
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musculature was immunostained and the 220 kD and
320 kD forms of tenascin were detected in villus-
depleted colonic extracts. Tenascin-C may thus not be
required for intestinal villus development. However, its
role in the intestinal mucosa may be more subtle.
Although tenascin was not detected in the transient
colonic villi at the protein level, Tn-C mRNA was found
to be expressed at levels comparable to those found in
small intestinal villi (Bélanger et al., unpublished data).
Furthermore, it was strongly detected at the epithelial-
mesenchymal interface in both developing and adult
small intestinal mucosa and in the mature colonic
glandular mucosa (see above). The mechanism of
mucosal remodeling during late development in the fetal
colon is still unknown (Ménard and Beaulieu, 1994) but
in light of these latter observations, tenascin-C in its 200
kD form could be important in the maintenance of
intestinal mucosa integrity, most likely by contributing
to functional epithelial-stromal interactions.

Tn-X in the human intestine

Much less is known about the other members of the
tenascin gene family in the intestine. The fetal human
gut was first identified as a relatively strong expresser of
Tn-X at the mRNA level (Bristow et al., 1993). By using
specific antibodies against murine tenascin-X fusion
proteins, Matsumoto et al. (1994) demonstrated
reciprocal staining patterns for tenascin-C and X in the
developing gut. Tenascin-X was found most prominently
expressed in the mesenchyme surrounding smooth
muscle and, in contrast to tenascin-C, was not detected
in villus cores.

Regulation of Tn expression

The fact that temporal and spatial patterns of
expression for Tn-C and, to some extent, Tn-X, are
highly variable during normal gut development as well
as under abnormal conditions indicates that the
expression of tenascins is highly controlled. This
phenomenon has been particularly well exemplified in
tissue culture where different types of cells can be
modulated in their production of Tn-C, including
epithelial cell lines derived from tissues which do not
normally express this molecule in vivo. Among growth
factors and cytokines known to upregulate Tn-C
expression are transforming growth factor-3, several
members of the fibroblast growth factor family,
interleukin-1 and 4, tumor necrosis factor-a and
angiotensin II (Mackie et al., 1992, 1998; Sharifi et al.,
1992; Hahn et al., 1993; Tucker et al., 1993; Chammas
et al., 1994, Rettig et al., 1994; Sakai et al., 1994, 1995;
Hakinen et al., 1995). In contrast, glucocorticoids seem
to repress the expression of Tn-C (Ekblom et al., 1993)
and Tn-X (Sakai et al., 1996). While the regulation of
tenascin expression by these factors remains to be better
documented in the gut, it is likely that altered expression
of Tn-C as reported in cancer (see above) as well as in

various other pathological conditions of the digestive
tract (Riedl et al., 1992, 1998; Parikh et al., 1994; Aigner
et al., 1997) is mediated at least to some extent by
growth factors and cytokines (Fiocchi, 1997).

Tn receptors in intestinal cells

Intestinal cell-tenascin interactions remain to be
poorly understood. Receptors for Tn-C have not yet been
identified in mature villus cells of the small intestine or
in surface cells of the colon, raising the possibility that
mature intestinal cells may not express specific tenascin-
binding proteins and that the molecule acts as a counter-
adhesive component. However, considering the
relatively low amounts of fibronectin in the adult
intestine (Beaulieu, 1992), it seems unlikely that Tn-C
works in conjunction with fibronectin to reduce adhesion
along the villus migratory pathway. One interesting
possibility is that the high level of Tn-C expression at
the epithelial-stromal interface may compete with the
strong adhesive cell-matrix interactions provided by
other molecules such as laminin-1 and -5 and the a38]
and 684 integrins, also expressed at high level in
regions rich in Tn-C (see Beaulieu 1999 for a recent
review). Clearly, more work will be needed to elucidate
the phenomenon of intestinal cell migration in the adult
intestine.

Recent observations from our laboratory indicate that
the integrin 981 could be involved in intestinal cell-
tenascin interactions under certain circumstances, namely
during development and in cancer progression. While
absent from the normal adult colonic epithelium (Palmer et
al., 1993), the integrin 931 has been detected in a
significant proportion of colon carcinomas (Basora et al.,
1998). Furthermore, the integrin was also detected in the
epithelium of both human fetal small intestine and colon,
predominantly confined to cells located in the crypts
(Basora et al., 1998; Desloges et al., 1998), which
represent the proliferative compartment. Interestingly,
integrin o981 analysis in intestinal cell lines supported the
relation between its expression and the proliferative status
of these cells (Desloges et al., 1998). These observations
are consistent with the finding that forced expression of
the a9 integrin subunit in the SW480 colon carcinoma cell
line stimulates, in a ligand-dependent manner, cell
proliferation and concomitant phosphorylation of the
mitogen-activated kinase, Erk2 (Yokosaki et al., 1996).

Conclusion

Several questions remain concerning tenascins in the
human gut. Based on the determination of the expression
patterns for the various members of this family of
complex extracellular matrix molecules, Tn-C emerges as
a key player likely to be involved in intestinal mucosa
development, maintenance and disease. Its exact role on
the regulation of fundamental intestinal cell function(s)
such as proliferation, migration and tissue-specific gene
expression remains however to be established.
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