Clinical applications of image cytometry to human tumour analysis
Keywords:
image cytometry, cancer cells, DNA content, morphometry, textureAbstract
Image cytometry (ICM) is widely applied to the automated screening, the detection, the diagnosis, the classification, the prognosis and the therapeutic followup of different types of cancers (breast, bladder, cervix,. . .). This review describes the analysis methods and the applications of nuclear image analysis, the determination of DNA content and the analysis of morphometry and of nuclear texture. DNA content analysis can contribute to a prognostic information in addition to other prognostic factors for breast, renal and prostate cancers. For ovarian cancer, aneuploidy seems to be related to prognosis. Bladder tumours with DNA aneuploidy were frequently of high malignancy while ploidy was significantly correlated to relapse risk. For digestive cancers, patients presenting DNA diploid tumours show a better survival than patients with aneuploid ones. Morphometry seems to be a more important criterion than other conventional prognostic factors of invasive breast and digestive carcinomas. A differential diagnosis between normal and neoplastic thyroids is more precise when based on a quantitative evaluation of texture associated to morphometry. Textural parameters permit the discrimination of two populations of patients having a different prognosis and could thus be an aid for prognosis in prostatic cancers. Morphonuclear parameters contribute to separate low and high grade bladder carcinomas. Although ICM was frequently reported, results from the reported examples were not always obvious. In conclusion, the measurements obtained with ICM could be helpful for a decision in several cancers but could not be a substitute for the classical approach of the pathologist.Downloads
Issue
Section
License
Las obras que se publican en esta revista están sujetas a los siguientes términos:
1. El Servicio de Publicaciones de la Universidad de Murcia (la editorial) conserva los derechos patrimoniales (copyright) de las obras publicadas, y favorece y permite la reutilización de las mismas bajo la licencia de uso indicada en el punto 2.
2. Las obras se publican en la edición electrónica de la revista bajo una licencia Creative Commons Reconocimiento-NoComercial-SinObraDerivada 3.0 España (texto legal). Se pueden copiar, usar, difundir, transmitir y exponer públicamente, siempre que: i) se cite la autoría y la fuente original de su publicación (revista, editorial y URL de la obra); ii) no se usen para fines comerciales; iii) se mencione la existencia y especificaciones de esta licencia de uso.
3. Condiciones de auto-archivo. Se permite y se anima a los autores a difundir electrónicamente las versiones pre-print (versión antes de ser evaluada) y/o post-print (versión evaluada y aceptada para su publicación) de sus obras antes de su publicación, ya que favorece su circulación y difusión más temprana y con ello un posible aumento en su citación y alcance entre la comunidad académica. Color RoMEO: verde.