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Summary. Liver fibrosis occurs as a consequence of net
accumulation of matrix proteins (especially collagen
types I and III) in response to liver injury. The
pathogenesis of liver fibrosis is underpinned by the
activation of hepatic stellate cells (HSC) to a
myofibroblast like phenotype with a consequent increase
in their synthesis of matrix proteins such as interstitial
collagens that characterise fibrosis. In addition to this
there is increasing evidence that liver fibrosis is a
dynamic pathologic process in which altered matrix
degradation may also play a major role. Extracellular
degradation of matrix proteins is regulated by matrix
metalloproteinases (MMPS) — produced by HSC - which
in turn are regulated by several mechanisms which
include regulation at the level of the gene (transcription
and proenzyme synthesis), cleavage of the proenzyme to
an active form and specific inhibition of activated forms
by tissue inhibitors of metalloproteinases (TIMPS).
Insights gained into the molecular regulation of HSC
activation will lead to therapeutic approaches in
treatment of hepatic fibrosis in the future, and could lead
to reduced morbidity and mortality in patients with
chronic liver injury
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Introduction: Liver Fibrosis

Fibrosis is the liver’s wound healing response to a
variety of chronic insults including autoimmune damage
(primary biliary cirrhosis, chronic active hepatitis),
infection (particularly hepatitis B and C), parasitic
infestation (schistosomiasis) and toxic damage
(principally alcohol) (Friedman, 1997). The high
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prevalence of these illnesses make liver fibrosis a worthy
cause of study: 250x10° people worldwide are infected
with Hepatitis B infection alone. To date, progressive
fibrosis and cirrhosis have been viewed as a static
irreversible response to chronic injury. Evidence is
accumulating that liver fibrosis can now be considered
as a dynamic and potentially reversible process in which
changes in matrix degradation occur in addition to
matrix synthesis: moreover it mirrors parenchymal
wound healing in other tissues.

Pathogenesis

Hepatic fibrosis is characterised by an accumulation of
extracellular matrix (ECM) in response to chronic liver
injury and is usually distinguished from cirrhosis
(advanced fibrosis) which is considered irreversible and
in which thick bands of matrix fully encircle the
parenchyma forming abnormal nodules. By definition
cirrhosis results in the disruption of the normal liver
architecture. However this definition is potentially
misleading; fibrosis and cirrhosis should be considered
part of a disease process continuum in which cirrhosis
represents the most advanced stage. Similarities of the
wound healing response in liver, kidney, lung and
arteries have increased our knowledge of how tissues
respond to ongoing injury. Central to the processes in all
of these tissues is the recruitment of inflammatory cells,
and the activation of mesenchymal myofibroblast like
cells (Stellate cells in liver) onto which cell signals
converge. The activated myofibroblast cells proliferate
and secrete interstitial or fibrillar collagens (collagen I
and III). Ultimately the activated myofibroblast-like
stellate cells express cytokines in an autocrine manner.
Central too, is the release of matrix degrading proteases,
matrix metalloproteinases (MMPs) and their regulation
by the specific inhibitors - the so called tissue inhibitors
of metalloproteinases (TIMPs) and other protease
inhibitors. Experimental liver injury and human cirrhosis
are characterised by an increased content of extracellular
matrix (ECM) constituents predominantly the interstitial
or fibrillar collagen: collagen types 1 and III (Rojkind et
al., 1979; Siebold et al., 1988). Indeed quantitative as
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well as qualitative changes in other matrix components
occur including sulphated proteoglycans (Arenson et al.,
1988), and matrix glycoproteins including laminin
(Maher et al., 1988), cellular fibronectin (Martinez-
Hernandez, 1985) and tenascin (Ramadori et al., 1991).
The changes in matrix composition are similar whatever
the liver insult: this underscores the importance of
understanding the central regulatory elements of the
fibrotic process which in turn may identify novel
therapeutic strategies that may intervene or reverse the
fibrosis response.

The hepatic stellate cell

Central to the changes observed in matrix production
(fibrogenesis) and degradation (fibrolysis) is the Hepatic
Stellate Cell (HSC) which has now been identified as the
major source of matrix in chronic liver injury (Friedman,
1997; Kawada, 1997). The HSC is a mesenchymal cell,
which lies in the Space of Disse between the specialised
hepatic sinusoidal epithelium and the palisades of
hepatocytes (Wake, 1980). In normal liver HSC are
distinguished by prominent intracellular lipid droplets
that contain vitamin A stored as retinyl esters (Hendriks
et al., 1988). In health HSC are the principal storage site
for retinoids and the endogenous ultraviolet fluorescence
of vitamin A which in these cells provides a convenient
cellular marker for these cells and imparts a buoyancy
which assists in their purification (Friedman et al.,
1985).

HSCs lie in close proximity to a matrix consisting

Table 1. Products and components of hepatic stellate cells.

1 Vitamin A related compounds
Retinoids
Nuclear retinoid receptors

2 Cytoskeletal markers
desmin, alpha-smooth muscle actin

3 Extracellular Matrix
Collagens
Proteoglycans
Glycoproteins

Types |, 1l 1V, V, VI, XIV
eg Heparan sulphate
eg laminin, tenascin

4 Proteases and Inhibitors
Matrix proteases: eg Interstitial Collagenase/MMP-1,
Gelatinase AIMMP-2
Stomelysin/MMP 3
Membrane-type metalloproteinase
1(MT-1 or MT-MMP)/MMP 14
eg TIMPs 1-4 and PA-1

5 Cytokines, growth factors and inflammatory mediators
Prostaglandins
Acute Phase components
Mitogens
Vasoactive Mediators
Fibrogenic compounds

Protease Inhibitors:

eg Endothelin 1 (ET-1), nitric oxide (NO)
eg TGF-beta 1-3
6 Receptors
Cytokine receptors
7 Signaling molecules and transcription factors

Signaling components  eg MAP kinase
Transcription factors eg SP-1, NFKB, c-myb

primarily of type IV collagen, laminin and heparan
sulphate proteoglycans (Burt et al., 1990). In chronic
injury the HSCs become activated - undergoing a
phenotypic change to a myofibroblast type cell that
expresses a smooth muscle actin (Rockey et al., 1992),
proliferate and have been shown to secrete matrix
proteins: specifically collagen I and III (Milani et al.,
1989, 1990a,b). The primary location of fibrotic change
exists according to the site of injury (eg perivenular in
CCl4 intoxication and periductular following bile duct
ligation in rats) but with progressive injury will spread to
become panlobular. HSC can be demonstrated to
undergo a transitional cell stage before becoming more
fully activated in the early stages of fibrotic models
(McGee and Patrick, 1972; Minato et al., 1983; Senoo et
al., 1984; Maher et al., 1988; Takahara et al., 1988;
Maher and McGuire, 1990). Studies of HSC biology
have been enhanced by the observation that when
primary HSC cultures are plated onto uncoated plastic
they demonstrate the phenotypic changes which mirror
activation. This observation has greatly facilitated the
study of HSC activation and the culture model of
activation is widely used and accepted in studies of
hepatic fibrogenesis.

Evidence for HSC as the main source of matrix in
liver injury

In injury, HSC express collagen types I, III, IV
(Takahara et al., 1988; Nakatsukasa et al., 1990) and
laminin (Milani et al., 1990b) but little or no messenger
RNA is localised to parenchymal cells (see Table 1).
HSCs are therefore now considered to be the major
source of fibrotic matrix in liver injury (Maher and
McGuire 1990; Pietrangelo et al., 1992).

Activation consists of early (initiation) and late
(perpetuation) phases (Friedman, 1997). Early activation
may be provoked by rapid deposition of cellular
fibronectin and release of soluble stimuli by Kupffer
cells (hepatic macrophages) (Friedman and Arthur,
1989). The late phases of activation are characterised by
proliferation (Wong et al., 1994), fibrogenesis,
contractility, release of cytokines (Maher et al., 1988)
and certain MMPs. The most effective stimulus for
proliferation described to date is platelet derived growth
factor (PDGF) - a cytokine which also plays a role in
smooth muscle cell proliferation during atherosclerosis.
The expression of PDGF receptors is a feature of HSC
activation (Wong et al., 1994). Other factors that may be
important include epidermal growth factor (Marra et al.,
1996), fibroblast growth factor (Pinzani et al., 1989),
endothelin (Housset et al., 1994), insulin-like growth
factor (Pinzani et al., 1990), thrombin (Marra et al.,
1995) and transforming growth factor alpha (TGFa).

In fibrogenesis, alongside the increased ECM
accumulation through HSC proliferation, matrix
production per cell is also increased. The most effective
stimulus to collagen-1 synthesis yet described is
transforming growth factor beta 1 (TGF B,). TGF §3; can
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be derived from HSC (autocrine) (Bachem et al., 1992;
Houglum et al., 1994) and from Kupffer cells
(paracrine), (Friedman and Arthur, 1989). TGF B,
binding to HSC increases with HSC activation
(Houglum et al., 1994), and activation of latent TGF B,
itself may also contribute to a net increase in its activity.
Activation of HSC may also be associated with an
increase in contractile activity, a quality common to
myofibroblast-like cells in other tissues. HSC
contractility is regulated by endothelin (Housset et al.,
1994), nitric oxide (Rockey and Chung, 1995) and
potentially by eicosanoids and modifiers of cyclic AMP
(Pinzani et al., 1990).

HSC may regulate the inflammatory response to
liver injury by releasing cytokines chemotactic for
leukocytes. Colony stimulating factor (Pinzani et al.,
1992) and monocyte chemotactic peptide (Marra et al.,
1993), both secreted by HSC, are upregulated during
HSC activation. These findings may contribute to the
marked infiltration of mono-nuclear leukocytes which
accompanies most forms of experimental and human
liver injury. Most recently HSC have been demonstrated
to release I1-10, a cytokine with modulatory effects on
macrophages suggesting that rather than being a passive
recipient of fibrogenic signals the HSC may influence
the inflammatory response by down regulating Kupffer
cell activity (Thompson et al., 1998a.b).

Matrix degradation in liver fibrosis

The resorption of extracellular matrix is a normal
event in the remodelling seen in a variety of tissues eg.
in embryogenesis, trophoblastic implantation, angio-
genesis, tissue morphogenesis and growth. In
pathological processes the accelerated breakdown
occurring in for example arthritides, periodontal disease,

Table 2. The matrix metalloproteinases family (MMPs).

tumour invasion and metastases may in part be due to a
breakdown in the tight control of degradative processes
(Murphy et al., 1991).

In fibrotic liver injury there is evidence to suggest
that: 1) Degradation of the normal basement membrane-
like liver matrix (in the Space of Disse) occurs. This
may disturb hepatocyte function and promote deposition
of a fibrillar liver matrix. 2) In progressive fibrosis there
is a failure to degrade excess fibrillar collagens (Arthur,
1994a). The major class of enzyme expressed by
mesenchymal cells to mediate this matrix remodelling
are the Matrix Metalloproteinases (MMPs) (see Table 2).

The MMPs are a family of zinc and calcium
dependent endopeptidases secreted by connective tissue
cells that have activity against the major constituents of
matrix including fibrillar (interstitial and banded) and
non-fibrillar collagens. MMPs are important in ECM
turnover (Murphy et al., 1991), and there is strong
evidence for their expression by HSC (Emonard et al.,
1990; Herbst et al., 1991; Milani et al., 1992) and
Kupffer cells (Winwood et al., 1995). The MMPs can be
grouped according their enzymatic substrate (see Table
2). The first group are the collagenases: these MMPs are
central to the process of remodelling/repair of fibrotic
tissue as they cleave the helix of native fibrillar
collagens I, IT and III to render the collagen susceptible
to degradation by other MMPs to which they were
previously resistant (Goldberg et al., 1986). Thus
activation of Interstitial Collagenase (MMP-1) or an
alternative analogue is crucial to the process of
remodelling of fibrotic matrix - the expression of
Interstitial Collagenase would be necessary to initiate
degradation of the most abundant fibrotic collagen
(types I and III) (Friedman, 1997). A recent report that
Gelatinase A (MMP-2) may have degradative activity
against collagen I (Franklin, 1995) would, if confirmed,
have implications for the process of matrix remodelling

NAME NUMBER SUBSTRATE
The Collagenases
Interstitial Collagenase MMP-1 Collagen I, I, 11, VII, VIII, X, gelatins, aggrecans, tenascin
Neutrophil Collagenase MMP-8 Collagen I, I, 11, VII, X, aggrecan
Collagenase 3 MMP-13 Collagen I, I, 11, VII, X, aggrecans, gelatins
The Gelatinases
Gelatinase A MMP-2 Gelatin, collagen types IV, V, VII, X (may also have Interstitial Collagenase activity against
collagen 1), fibronectin, elastin, laminin, aggrecan, vitronectin
Gelatinase B MMP-9 Gelatin, collagen IV, V, VII, X, Xl, vitronectin, elastin, aggrecan
The Stromelysins
Stromelysin 1 MMP-3 Aggrecan, link protein, fibronectin, laminin, elastin, transin, gelatins
Stromelysin 2 MMP-10 Gelatins I, lll, IV, V; collagens IlI, IV, V, VIII, IX, activates procollagenase, fibronectin, laminin,
elastin, aggrecan
Stromelysin 3 MMP-11 N-terminal domain cleaves casein
Matrilysin MMP-7 Gelatins, elastin, aggrecans, fibronectin, link protein, activates procollagenase, vitronectin,
tenascin C, entactin, laminin
Membrane-type MMPs
MT-1 MMP-14 Activates progelatinase A and possibly other MMPs, collagen I, 1l, lll; dermatan sulphate,

laminin B chain, fibronectin, gelatin, vitronectin
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- in the liver and other organ/tissue systems. This second
group of MMPs, the Gelatinases, have activity against
denatured collagen (gelatin), some collagens, elastin and
laminin. The gelatinases are significant for their
important role in degrading normal type IV collagen in
the basement membrane in the Space of Disse during the
early stages of the fibrotic process (Murphy et al., 1991).
The third group, the Stromelysins, have activity against a
variety of collagen: II, IV, IX, X, XI, denatured collagen
(or gelatin), laminin and fibronectin. Stromelysins are
also important in that they activate procollagenase
(Murphy et al., 1991; Matrisian, 1992). A fourth group,
the membrane type MMPs (MT-MMP), comprises of
three members and serve to activate gelatinase and by
virtue of a unique structure localize this activity to the
cell surface (Sato et al., 1994; Takino et al., 1995; Will
and Hinzmann 1995).

Regulation of MMP expression and activity

The extracellular activity of MMPs is regulated at
various stages: 1) by transcriptional activation at the
level of the gene; 2) by activation of the latent
proenzyme when the propiece is cleaved; and 3) by
extracellular inhibition by the specific Tissue Inhibitors
of Metalloproteinases (TIMPs) or more general protease
inhibition such as a-2 macroglobulin. A series of growth
factors including II-1, TNF-a, PDGF, B-FGF, and EGF
regulate MMPs at the level of the gene (Matrisian, 1990;
Murphy et al., 1990, 1991; Murphy and Hembry 1992).
An important cytokine in the context of liver fibrosis is
TGF-B; which differentially regulates certain MMPs and
is expressed by Kupffer cells (Matsuoka and Tsukamoto,
1990) and activated HSCs (Bachem et al., 1992).
Activated HSCs express TGF-8; receptors (De Bleser et
al., 1995), TGF-; mRNA and also secrete this cytokine
in an autocrine manner. In fibroblasts TGF-; down
regulates interstitial collagenase (MMP-1): important in
the degradation of collagen I (Edwards et al., 1987),
whilst upregulating gelatinase A (MMP-2) (Overall et
al., 1989) TIMP-1 and collagen I (Matsuoka and
Tsukamoto, 1990; Wahl et al., 1993). Hence TGF-8; is a

Table 3. Properties of tissue inhibitors of metalloproteinases (TIMPs).

profibrogenic cytokine and is likely to play an important
role in the fibrotic process.

A second level of control resides where the secreted
form of all MMPs (pro-MMP) is converted to the active
MMP by cleavage of the propiece (Bachem et al., 1989;
Friedman et al., 1989; McDonald, 1989). This process
may be mediated by plasmin (Matrisian, 1992; Murphy
et al., 1992). Active stromelysin cleaves activated
interstitial collagenase (MMP-1) (Murphy et al., 1987;
Matrisian, 1990) whilst the fourth group of MMPs: MT-
MMP activates gelatinase A (MMP-2) at the cell
membrane.

The TIMPs

Tissue Inhibitors of Metalloproteinases (TIMPs)
function at two levels: certain TIMPs stabilise specific
pro-MMP species and all TIMPs inhibit all active MMP
enzymes: thus acting as an important regulatory brake on
metalloproteinase activity (see Table 3) (Docherty et al.,
1985; Boone et al., 1990). Four TIMPs have been
identified to date (TIMP 1, 2, 3 and 4) - each is a
separate gene product (Pavloff et al., 1992; Denhardt et
al., 1993; Apte et al., 1994; Wu and Moses, 1998) (see
Table 3). Structurally, there are similar features running
through the TIMP family. TIMP 1 and 2 share 40%
amino acid homology and both have three looped
structures stabilised by six disulphide bonds (Boone et
al., 1990; Murphy and Docherty, 1992; Denhardt et al.,
1993). TIMPs bind to MMPs in a stoichiometric manner
which is irreversible under normal physiological
conditions. The MMP is rendered inactive when the
TIMP binds to its active site (Cawston et al., 1983; Bo
and Denhardt, 1992; Murphy and Docherty, 1992).
Binding is non-covalent so under certain in vitro
conditions TIMPs can be separated from the MMP
species with the former retaining activity against MMPs
(Murphy et al., 1989). TIMPs 1 and 2 inhibit the active
form of all MMPs (Denhardt et al., 1993) and TIMPs 3
and 4 probably have the same spectrum of activity. Two
functional domains exist on the TIMP molecule: the N
terminal is vital for activity against MMPs - truncation

TIMP-1 TIMP-2 TIMP-3 TIMP-4
MMP inhibition All All All? All?
Mature protein size (kDa) 28.5 21 21 23
Glycosylation Yes No Yes No
Localization Diffusible Diffusible ECM bound Unknown
Expression Inducible Constitutive
Possibly Inducible in Hepatic Stellate Cells Inducible Unknown
Major tissue sites Liver, Bone, Liver, Lung, brain ovaries, testis, heart, Kidney, brain, lung,  Kidney, colon, placenta, testis, brain,
Ovary placenta heart, ovary heart, ovary, skeletal muscle
Binding to pro-MMP MMP-9 MMP-2 Unknown Unknown
Binding to all active MMPs Yes Yes Probably Probably

ECM: extracellular matrix
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of the TIMP molecule which spares the N-terminal
allows continued inhibitory activity against MMPs. The
C terminal facilitates interaction with the prometallo-
proteinases (Howard and Banda, 1991; Howard et al.,
1991; Ward et al., 1991; Fridman et al., 1992). TIMPs 1
and 2 bind to pro-Gelatinase species (Gelatinase B/MMP
9, Gelatinase A/MMP 2 respectively) thus preventing
activation (De Clerck et al., 1991; Goldberg et al., 1992).
TIMPs are regulated at the level of transcription by
cytokines and growth factors that also govern MMP
expression and that are also important both in HSC
activation and HSC synthetic function. For example
TGF-B upregulates TIMP-1 and gelatinase A whilst
down regulating TIMP-2, interstitial collagenase (MMP-
1) and stromelysin (Edwards et al., 1987; Overall et al.,
1989, 1991). TNF-alpha upregulates TIMP-1 and
interstitial collagenase (MMP -1) (Marshall et al., 1993).

Studies mapping the gene promoters of TIMPs and
MMPs show some common regulatory motifs that differ
in individual TIMPs/MMPs in terms of their frequency
and position in relation to the transcription start site. For
example the murine TIMP-1 and interstitial collagenase
(MMP-1) promoters both have AP-1 and PEA-3 binding
sites but in different configurations (Edwards et al.,
1992; Schorpp et al., 1995). An AP-1 site is noted in the
promoters of stromelysin and gelatinase B but not in
gelatinase A (MMP-2). The human TIMP-2 gene on
chromosome 17 is flanked by 5° AP-1 and AP-2
consensus sequences and several SP-1 sites in
association with a TATA box (De Clerck et al., 1994).
The AP-1 consensus site in the TIMP 2 promoter is
further upstream from the transcription start site than
that found in the TIMP-1 promoter and is not associated
with a PEA-3 motif. As in TIMP 1 and 2, the TIMP 3
promoter has multiple SP-1 sites which confer a high
basal expression in growing cells (Wick et al., 1995).
The spatial distribution and differing frequencies of
transcription binding sites in the promoters of TIMPs 1
and 2 may explain in part the differential expression
observed in response to cytokines such as TGF B and
TNF-a. The promoters also provide a mechanism
whereby TIMPs can be coregulated and independently
regulated to inhibit MMP activity in a wide variety of
physiological (eg growth and development) and
pathological processes (eg arthritides and liver fibrosis).
Moreover, from what has been discussed it can be
proposed that through relatively small changes in the
ratio of TIMP: MMP concentrations alterations in matrix
degradation can be effected and regulated.

There are large regions of the TIMP promoter
regions still undescribed. Recently for example a novel
transcription factor binding site "Upstream TIMP
element 1" has been described along with its associated
binding proteins (Trim et al., 2000).

Interaction of TIMPs with MMPs in the fibrotic
process and evidence for MMP Inhibition during liver
fibrosis

Stellate cells express a variety of MMPs: both

human and rat HSCs express gelatinase A (MMP-2) and
rat HSC express Stromelysin (MMP-3) (Arthur et al.,
1989, 1992; Vyas et al., 1995). Gelatinase A expression
is upregulated with HSC activation whilst Stromelysin is
transiently expressed with HSC activation over a period
of 72 hours. Both MMPs can be immunolocalized to
HSC and MMP activity can be detected in cell culture
supernatants. Both MMPs are also expressed in acute
liver injury in perisinusoidal cells (Herbst et al., 1991;
Iredale et al., 1993). Collagenase can be localised to the
HSC cytoplasm during activation by culture on uncoated
plastic (Arthur, 1994b).

Messanger RNA (mRNA) for collagenase cannot be
detected in activated rat HSC but is detected in freshly
isolated cells (Iredale et al., 1996). However TNF-a and
IL-1 can induce interstitial collagenase expression in
activated human HSCs (Emonard et al., 1990; Iredale et
al., 1995). Cultured HSC also release interstitial
collagenase in response to polyunsaturated lecithin (Li et
al., 1992). HSCs therefore possess the ability to remodel
matrix during activation and specifically to mediate
remodelling of interstitial collagens by expressing
interstitial collagenase (MMP-1). Other cells may play a
role in matrix degradation such as Kupffer cells which
express Gelatinase B (Winwood et al., 1995) and
sinusoidal endothelial cells which express stromelysin
(Herbst et al., 1991).

TIMP expression in progressive fibrosis

To address the concept that TIMP expression may
promote fibrosis by reducing collagenase activity in
progressive liver fibrosis, the gene expression of TIMPs
1 and 2 and MMPs have been studied in HSC activation
both in tissue culture and in vivo. When HSC are
cultured in uncoated tissue culture plastic, a process
which recapitulates many of the features of activation
including o Smooth Muscle Actin (o SMA) and
ProCollagen 1 (PC-1) expression, there is an increase in
the transcription of TIMP-1 mRNA in activated cells
compared to quiescent (freshly isolated) cells (Iredale et
al., 1992). TIMP-1 can be immunolocalized to HSC and
also detected extracellularly in HSC cell culture
supernatants by ELISA. When HSC conditioned media
is subjected to gelatin sepharose chromatography, TIMP-
1 bound to Gelatinase A (MMP-2) is separated: removal
of TIMP-1 is associated with a twenty-fold increase in
gelatinase activity. Returning TIMP-1 to the media
results in re-inhibition of Gelatinase A and a reduction in
its activity (Iredale et al., 1992). Both TIMP 1 and 2 are
found in HSC conditioned media and TIMP 2 mRNA is
observed in northern analysis of activated HSC total
RNA (Iredale et al., 1992; Benyon et al., 1996). It is of
interest that HSC activation appears to be associated
with an upregulation of TIMP-2 expression: a feature not
observed in other cell lines studied to date. HSC may not
be the sole source of TIMPs in the liver: TIMPs 1 and 2
are detected in Hep G2 hepatoma cell lines (Kordula et
al., 1992; Roeb et al., 1993; Benyon et al., 1996). In
these studies TIMP 1 expression was found to increase
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in the presence of IL-6, an acute phase cytokine,
suggesting that TIMP 1 may be released by hepatocytes
in acute liver injury.

A number of other studies have indicated that a
reduction in matrix remodelling activity occurs as
fibrosis progresses manifested by a fall in interstitial
collagenase (MMP-1) activity (essential in the
degradation of collagens I and III). This is noted in
models of alcoholic liver injury in humans and primates
and carbon tetrachloride injury in rats (Okazaki and
Maruyama, 1974; Maruyama et al., 1981, 1982; Perez-
Tamayo et al., 1987). This suggests that inhibition of
matrix degradation is a feature of fibrogenesis. Further
evidence to support this concept is provided by models
of recovery from hepatic fibrosis. During carbon
tetrachloride induced liver injury in the rat progressive
fibrosis can be documented and becomes established
after 4 weeks of treatment. At this stage prompt
withdrawal of the toxin results in resolution of the
fibrotic changes over a period of 28 days (Iredale et al.,
1998). Analysis of the TIMP/Collagenase relationship in
this model indicates that during progressive fibrosis
interstitial collagenase continues to be expressed but its
activity falls with a concurrent upregulation in TIMP 1
and 2 expression (Mallat et al., 1995). In the recovery
phase expression of TIMPs 1 and 2 decreases with a
concurrent rise in collagenase activity accompanied by
histological evidence of matrix remodelling (Iredale et
al., 1998). The expression of Collagenase mRNA
remains relatively constant.

In a model of fibrotic liver from murine
schistosomiasis expression of interstitial collagenase,
detected immunologically, remains relatively constant
(Takahashi et al., 1980; Takahashi and Simpser 1981;
Truden and Boros, 1988) whilst collagenase activity
decreases emphasizing the importance of expression of
collagenase inhibitors during fibrogenesis. Further
evidence for the important roles of TIMPs in
fibrogenesis come from the analysis of serum in patients
with hepatic inflammation and established cirrhosis
reveals an increase in TIMP 1 levels by ELISA
(Murawaki et al., 1993, 1994; Muzzillo et al., 1993). In
addition, when TIMPs 1 and 2, interstitial collagenase
and Gelatinase A mRNA expression in fibrotic liver
compared to normal were studied by Ribonuclease
Protection Analysis (Iredale et al., 1995; Benyon et al.,
1996), TIMP 1 and 2 transcripts were increased in
fibrotic liver, as are Gelatinase A transcripts (Benyon et
al., 1996). In contrast Interstitial collagenase transcripts
were only marginally increased in primary sclerosing
cholangitis and primary biliary cirrhosis (Benyon et al.,
1996). TIMP 1 was also immunolocalized to peri-
sinusoidal cells in fibrotic liver in 75% of biopsies
positive for interstitial collagenase suggesting that
coexpression of TIMP 1 with interstitial collagenase
occurred (Benyon et al., 1996). This data provides
powerful evidence that progressive fibrosis is associated
with changes in the pattern of matrix degradation in
addition to matrix synthesis. Moreover, current evidence

suggests that such changes may be mediated by the
powerful MMP inhibitors the TIMPs.

Conclusion

In summary, the Hepatic Stellate Cell has been
examined in the context of progressive fibrotic liver
injury. There is considerable evidence that HSC are the
principle effector cells for matrix remodeling in liver
injury and that during HSC activation TIMPs 1 and 2
mRNA are expressed. Understanding the dynamic
changes in TIMP expression in HSC activation will
enhance our knowledge of fibrogenesis and may lead to
the development of novel therapeutic strategies based on
promoting matrix degradation. It is anticipated that
further insights into the relative roles of the TIMPs and
MMPs will become possible as experimental tools such
as the development of TIMP gene knockout mice
become available to facilitate definitive mechanistic
studies.
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