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Summary. Osteoblasts and bone lining cells form a near 
continuous layer covering the bone surface and 
interactions between these cells and the organic matrix 
of bone are important determinants of osteoblast 
proliferation and differentiation. In addition, cells of the 
osteoblast-lineage form functional cornrnunications with 
each other, with the extra-cellular matrix and with 
osteocytes through cytoplasmic processes extending 
through canaliculi in the bone. Together, these cells form 
a network of putative importance in the regulation of 
skeletal homeostasis. Cell-cell and cell-matrix 
interactions are mediated by members of severa1 families 
of cell adhesion molecules, and knowledge of their 
interactions will be of fundamental importance in 
understanding the role of osteoblast in skeletal turnover . 
Here, the expression pattern of members of the major 
families of cell adhesion molecules by cells of the 
osteoblast lineage is reviewed. Special emphasis has 
been placed on human tissues. In addition, the possibility 
that cells at progressive stages of the osteoblast lineage 
have different profiles of cell adhesion molecule 
expression is explored, and the putative significance of 
cell-matrix interactions in human skeletal disease briefly 
discussed. 
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Adhesion and osteoblast function; an overview 

Bone remodeling involves the co-ordinated response 
of osteoblasts, osteocytes and osteoclasts. Osteoblasts 
and bone lining cells form a continuous layer covering 
the periosteal, endosteal and trabecular bone whilst 
osteocytes are found in lacunae set within the bone 
matrix and are joined both to their neighbours and cells 
lining the bone surfaces by cytoplasmic processes which 
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pass through fine channels or canaliculi. Osteoclasts are 
recruited, when needed, to sites of bone resorption. 
Together, this interconnecting network of osteoblasts, 
bone lining cells and osteocytes provide a possible 
mechanism for the detection of physical or mechanical 
changes and the co-ordination of resorptive and 
osteosynthetic activity leading to remodeling. Cell-cell 
and cell-matrix communication is central to this process. 

Pathological situations where the balance between 
resorption and remodelling becomes disturbed further 
illustrate the importance of cell-matrix interactions in 
skeletal homeostasis. In the adult, bone formation de novo 
is pathologic or metaplastic. Under normal circumstances 
osteosynthesis takes place during remodelling of pre- 
existing bony surfaces. If these are lost, as in post 
menopausai osteoporosis, bone formation does not occur, 
the trabecular structure breaks down and can become 
replaced by fatty tissue (Burkhardt et al., 1987). Several 
studies have demonstrated the presence of pluripotential 
stromal-vascular precursor ceils capable of giving rise to 
osteoblast-like cells and adipocytes within the marrow 
(Friedenstein, 1976; Owen, 1985; Bennett et al., 1991). It 
is probable that interactions between these cells and 
components of the trabecular bone matrix are determining 
factors in bone cell recruitment. 

Cell-matrix interactions associated with osteoclastic 
bone resorption have been researched extensively 
(Vaananen and Horton, 1995; Horton and Rodan, 1996). 
Much less is known about cell-cell and cell-matrix 
interactions in osteoblasts and related populations, 
although there has been considerable progress since the 
first published analysis (Horton and Davies, 1989). Here, 
we review the status of knowledge of the role of the 
major families of cell adhesion molecules in cells of the 
osteoblast lineage both in health and disease. 

lntegrins 

Structure and function 

Integrins (Hynes, 1987, 1992; Ruoslahti and 
Pierschbacher, 1987) are N-glycosylated glycoproteins 
with a heterodimeric structure composed of covalently 
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linked a and B chains. 16 different mamrnalian a and 8 B 
subunits have been identified, combinations of which 
form 22 distinct heterodimers. Most integrins, including 
all those expressed in osteoblasts, have a transmembrane 
structure with a large extracellular domain, a single 
hydrophobic transmembrane region and a short 
cytoplasmic domain. The extracellular domain has a role 
in adhesion to extra-cellular matrix proteins which 
involves binding highly specific peptide recognition 
sequences such as the Arg-Gly-Asp (RGD) sequence 
present in fibronectin or osteopontin (Pierschbacher and 
Ruoslahti, 1984) or the Gly-Glu-Arg (GER) motif in type 
1 collagen (Knight et al., 1998). Ligand binding leads to 
activation of one or more intracellular signal transduction 
pathways which, in turn, contribute to the regulation of 
differentiation, cytoskeletal organisation and other 
aspects of cell behaviour. In this way cells can respond to 
signals in the surrounding extra-cellular matrix, so called 
'outside-in' signalling. In addition, a cell can determine 
the way it responds to the surrounding matrix through 
regulation of integrin synthesis and activity, a process 
temed 'inside-out' signalling. These pathways have been 
reviewed extensively in this journal (Cary et al., 1999) 
and elsewhere (Clark and Brugge, 1995; Schlaepfer and 
Hunter, 1998; Dedhar et al., 1999; Coppolino and 
Dedhar, 2000). 

There is now a growing body of evidence which 
points to a complex functional association between 
integrin-ligand binding and the regulation of cell 
behavior. Integrin-ligand binding, for example, can 
stimulate protease synthesis (Huhtala et al., 1995) and 

connective tissue breakdown. This may lead to exposure 
of ligand binding sites, altered cell-matrix signaling and 
modification of cell behavior (Werb, 1997). Evidence is 
also accumulating for a functional relationship between 
integrins and growth factors (Miyamoto et al., 1996; 
Sastry and Horwitz, 1996; Takeuchi et al., 1996; Schnelier 
et al., 1997; Woodard et al., 1998; Giancotti and 
Ruoslahti, 1999). Specific examples of situations in which 
growth factor receptor function is related to integrin 
heterodimers are discussed in later sections. Modulation 
of cell behavior, therefore, is unlikely to depend on signals 
from a single integrin. Instead, the product of convergence 
and summation of signals from several sources, including 
growth factors and extra-cellular matrix receptors, 
contribute to the homeostatic regulation of cell function. 
Although, to date, few studies have been directed 
specifically to osteoblasts, it would indeed be surpnsing if 
this were not true for celis of the osteoblast lineage. 

lntegrins and bone 

Bone cells express a diverse range of integrins. Cells 
of the two major bone lineages, the osteoblasts and 
osteoclasts, show distinct but overlapping patterns of 
integrin heterodimer expression. The avB3 together with 
the a2B1 heterodimers, are associated with osteoclast 
activity (Nesbitt et al., 1993; Vaananen and Horton, 
1995; Helfrich et al., 1996; Horton and Rodan, 1996; 
Horton, 1997; Helfrich and Horton, 1999). Cells of the 
osteoblast lineage express a rich array of integrins (Table 
1) with some contradiction between different studies as 

mesenchymal 
progenitor cells 

osteoblasts and 
osteoblast precursors 

osteocytes 

al, a2, a3, a5, a 6  
av, 81, P3, 84 

al?,  012, a3,  a4, 1x5, av, P5 
?CD 44 

a4, a5, av, P1, B3?, B5? 
CD 44 

CAM's expressed by cells of the osteoblast lineage but for which 
expression data at successive differentiation stages is largely unavailable. 

Cadherins: N Cadherin, Cadherins -4, -6 and -1 1 
lmmunoglobulin superfamily: ICAM-1 VCAM -1 LFA-3 
Selectins: ? L selectin 

Flg. 1. A diagramatic representation of a possible pattem of cell adhesion molecule (CAM) expression by cells at progressive stages of the osteoblast 
lineage. 
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to the specific heterodimers expressed. This may reflect 
the heterogeneity of osteoblast-like populations and 
includes the possibility that cells at successive stages of 
osteoblast differentiation, from foetal or adult bone, or 
from different anatomical sites, show different pattens of 
integrin expression. Nevertheless, trends are emerging. 
Whilst they may express a v  integrins, osteoblastic cells 
differ from osteoclasts in that the B1  integrins appear to 
have the major functional role. Several 81 integrins are 
expressed (Table 1) and include heterodimers with a 
high affinity for extra-cellular matrix components found 
in the matrix adjacent to bone such as collagen types 1 
and 111, osteopontin and fibronectin. 

Osteoblasts are uniquely involved with the synthesis 
and maintainence of the bone matrix, and the recognition 
of specific matrix components by integrin receptors 
appears to be necessary for osteoblast differentiation and 
maturation into osteocytes. However, it has proved 
difficult to study the role of individual integrins in vivo 
using contemporary transgenic strategies as loss of some 
integrins, particularly the B1, a 3  and a 5  chains, leads to 
pre-natal mortality at a stage of skeletal immaturity 
(Faessler and Meyer, 1995; Faessler et al., 1996). To 
overcome this problem, B1-null embryonic stem cells 
have been generated and implanted into mice to give B1- 
null teratomas or chimeras. Although not specifically 
directed towards skeletal tissue, these showed alterations 
in cell adhesive properties and extra-cellular matrix 
deposition (Brakebush et al., 1997). An alternative 
approach has involved expression of a dominant 
negative B 1  integrin subunit which is driven by an 
osteocalcin promoter (Zimmerman et al., 2000). 
Osteocalcin is a late stage marker of osteoblastic 
dBerentiation so the dominant negative B 1  subunit was 

only expressed in mature, rather than developing 
osteoblasts. Transgenic animals showed a decreased 
bone mass with osteoporotic changes in both the long 
and membrane bones, thus confirming a role for the B1  
subunit in adult bone tumover. The application of similar 
strategies to other integrin subunits wiii be required to 
determine their role in vivo. 

Collagen receptors 

The a l B l ,  a2B1 and a3B1 integrins bind coilagen and 
both fluorescent activated cell sorting (FACS) and 
immunohistochemical studies confirm that they are 
expressed by osteoblastic cells in vivo and in vitro. 
Collagen type 1 is the dorninant bone matrix protein and 
interactions involving these receptors are strong candidates 
for a role in regulating osteoblast behaviour. Furthermore, 
functional studies have demonstrated that a2B1-ligand 
binding leads to expression of markers of osteoblastic 
differentiation such as cbfa-1, aikaline phosphatase or 
osteocalcin (Xiao et al., 1997,1998). Culture of osteoblast- 
like cells in the presence of specific inhibitors or a 2  
function-perturbing antibodies blocks a2B1 dependent 
expression of these marker's (Takeuchi et al., 1997; Jikko et 
al., 1999). Others have shown that a 2  integrin ligand 
binding modulates cell motility and contraction of coliagen 
gels in vitro (Rukonen et al., 1995: Moffatt et al., 2000). 

a3B1 heterodimers bind collagen, laminin, 
fibronectin and severa1 other extra-cellular matrix 
proteins including osteopontin and bone sialoprotein 
(Isacke and Horton, 2000). Both RGD and non-RGD 
dependent mechanisms are involved. The a381 integrin 
is expressed by human bone cells (Table 1) but in 
osteoblastic cells rather than earlier, less differentiated 

Table 1. A summary of results compounded frorn key irnrnunohistochemical and FACS studies on the expression of integrins in hurnan osteoblasts. 
Bracketed citations report negative results. * indicates equivoca1 results. 

IMMUNOHISTOCHEMICAL STUDIES IN ViTRO STUDIES 

OsteoMasts Osteocytes Osteoblast-like cells Mesenchymal precurso cells 

a l  (CD49a) d (1, k) (1) d, b, n, o, i c 
a2 (CD49b) k, r (1, d) (1, r) q, n, o, S, i c 
a3 (CD49c) (i, 1) d (1) d, q, n, 0, S, i 0) c 
a4 (CD49d) i, 1 id, lo i, P' i, o, e (d, ii (c) 
a5 (CD49e) i, 1, k, r (d) j, 1 i, 9, 0. e, P, i (d) c 
a6 (CD49f) (1, d, k) O q, n (d, e, i) c 
av (CD 51) i, 1 ( 4  j, j, d, q, e. P c 
01 (CD29) 1, d, k 1, a, g d, q, g, P, i c 
02 (CD18) (dt k) (1) (d, e) (c) 
03 (CD 61) (1, d, k) (1) i, q, i id, e) c 
04 (CD 104) (1, k) (1) ND c 
05 m j, i, n, 0, P, 1 (f) ND 
avbl (CD 51lCD 29) ND ND (0) ND 
avb3 (CD 51lCD 61) (1, k) (1) n, o*, i ND 
aL (CD I la) id, e) id, e) ND (c) 
aM (CD 1 1 b) (d, e) id, e) ND ND 

a: Aarden et al. (1996); b: Brighton and Albelda (1992); c: Bruder et al. (1998); d: Clover et al. (1992); e: Clover and Gowen (1994); f: Ganta et al. 
(1997); g: Gohel et al. (1995); h: Gronowicz and McCarthy (1996); i: Gronthos et al. (1997); j:Grzesik and Robey (1994); k,:Horton and Davies (1989); 1: 
Hughes et al. (1993); m: Hultenby et al. (1993); n: Nissinen et al. (1997); o: Saito et al. (1994); p: Salter et al. (1997); q: Sinha and Tuan (1996); 
r: Steffensen et al. (1992); S: Riikonen et al. (1995). 
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populations (Alavi et al., 1998). Function-perturbing 
antibodies against the a 3  integrin significantly inhibit the 
formation of mineralised nodules in rat calvarial cultures 
(Moursi et al., 1997). 

Integrins and fibronectin 

Ten integrins are fibronectin receptors (Isacke and 
Horton, 2000). Of these, the a3B1, a4B1, d B 1 ,  avB3 and 
avB5 heterodimers are expressed in bone, but there is 
controversy about expression of the avB3 receptors by 
osteoblastic cells as opposed to osteoclasts (Table 1). Most 
are capable of binding a broad range of extra-cellular 
matrix proteins using both RGD-dependent and 
independent mechanisms. However, the a 5 B 1  receptor is 
unique as fibronectin is its only known ligand. 

In vitro studies using a rodent calvarial cell model 
have shown the a 5 B 1  receptor to be expressed by cells of 
osteoblast lineage and there is evidence that it is important 
in both the development and maintenance of bone. Binding 
involves at least 2 sequences located in the central cell 
binding domain of the fibronectin molecule, in particular 
an RGD sequence located in the type 111 repeat 10  
( ~ ~ 1 1 1 ~ 0 )  of the central cell binding region (Pierschbacher 
and Ruoslahti, 1984; Aota et al., 1994). Interruption of 
binding with blocking antibodies leads to inhibition of 
bone nodule formation by osteoprogenitor cells (Moursi et 
al., 1996, 1997). In mature cells a5B1-ligand binding 
appears to be necessary for cell survival and receptor 
blocking leads to apoptosis (Globus et al., 1998). 

The reported expression pattern of a 5  integrin in 
human tissues remains controversia1 (Table 1) and in our 
experience, is weak in tissue sections (Bennett et al., in 
press). Fibronectin is a normal constituent of human 
bone but data on its distribution within the bone matrix 
is sparse, and it has been reported absent from mature 
lamellar bone (Carter et al., 1991). Supporting evidence 
from rodent tissues suggest that fibronectin synthesis 
and expression is restricted to developing or immature 
bone (Weiss and Reddi, 1980; Cowles et al., 1998). It is, 
therefore, possible that a5B1-ligand interaction is a 
feature of bone formation during development or repair, 
and may not play a prominent role in the turnover and 
maintenance of mature lamellar bone. 

The a4B1 receptor binds fibronectin in a non-RGD 
dependent manner, binding to a site in the CS-1 region 
of the molecule with secondary binding sites in the CS5 
and H e p l l  regions (Isacke and Horton, 2000). 
Immunohistochemical studies using rabbit polyclonal 
antibodies have noted a 4  integrin in both osteoblasts and 
osteocytes (Grzesik and Robey, 1994; Pistone et al., 
1996) but this was not confirmed using murine 
monoclonal antibodies (Clover et al., 1992; Hughes et 
al., 1993; Alavi et al., 1998). 

lntegrins and mesenchymal precursor cells 

Although the a l 8 1  and a2B1 integrins are both 
collagen receptors they recognise types 1 and IV 

collagens using different mechanisms (Kapyla et al., 
2000). In addition, the a2B1 receptor shows greater 
affinity for collagen type 1 and alBl for collagen type 
IV (Kern et al., 1993). Type IV collagen is a feature of 
the endothelial basal lamina and the presence of the al 
integrin has been reported in mesenchymal stem cells 
with osteogenic potential (Bruder et al., 1998a). In 
addition, both type IV collagen and laminin are 
synthesised by pericytes (Schor and Canfield, 1998) 
which have been suggested as putative osteogenic 
precursor cells, and expression of these proteins is lost as 
cells become osteogenic (Owen, 1998). It is feasible, 
therefore, that the alBl heterodimer has a role in cell- 
matrix interactions involving mesenchymal precursor 
cells associated with small blood vessels. Support for the 
hypothesis that mesenchymal osteogenic cells express a 
profile of extra-cellular matrix receptors favouring 
adhesion to components of endothelial basal laminae 
comes from the demonstration that osteoprogenitors, in 
contrast to calvarial-derived cells, showed preferential 
binding to laminin, a component of the endothelial 
basement membrane (Roche et al., 1999). Furthermore, 
mesenchymal precursor cells express the a6  integrin 
(Bruder et al., 1998a) which dimerises with both the B1 
and B4 chains to give specific receptors for laminin, a 
major component of the basement membrane matrix. 

The av integrins 

The avB3  heterodimer is an RGD-dependent 
vitronectin receptor. Binding is not restricted to this 
protein and may involve others with RGD binding sites 
including fibronectin, osteopontin or bone sialoprotein. 
The avB5 heterodimer is also an RGD-dependent 
vitronectin receptor (Cheresh et al., 1989; Ramaswamy 
and Hemler, 1990; Horton, 1997) but rather less is 
known about its biological role. Their distribution and 
role in osteoblastic cells remains to be fully elucidated. 
Several studies report expression of the a v  in cells of the 
osteoblast lineage chain but vary with regard to 03 and 
8 5  subunits (Table l ) ,  and staining appears more 
prominent in osteoblasts than osteocytes (Hughes et al., 
1993; Grzesik and Robey, 1994). 

Some insight into the putative role of the a v  
integrins may be gained from other systems. The avB3 
heterodimer mediates attachment at sites of foca1 cell- 
matrix interactions in cultured fibroblasts (Wennerberg 
et al., 1996) and osteoclasts (Vaananen and Horton, 
1995) but this has not been fully investigated in 
osteoblasts. In addition to forming complexes with 
proteins important in intracellular signalling (Cary et al., 
1999), it co-localises with the platelet derived growth 
factor (PDGF) receptor (Vuori and Ruoslahti, 1994; 
Rousseau et al., 1997), and vitronectin binding enhances 
the biological activity of PDGF-B (Schneller et al., 1997; 
Woodard et al. ,  1998).  Severa1 studies have 
demonstrated important interactions between vascular 
endothelial growth factor (VEGF), its receptors, and a v  
integrins, during induction of angiogenesis. VEGF 
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activity has been found to depend on cell-matrix 
interactions involving the avB5 (Bloch et al., 1997) and 
B 1  integrins (Friedlander et al., 1995) and the avB3 
receptor has a role in the activation of VGEF receptor-2 
(Soldi et al., 1999). VGEF receptors are expressed in 
cells of the osteoblast lineage and have a regulatory role 
in neo-angiogenesis during endochondral ossification 
(Gerber et al., 1999). In the adult, fracture repair 
involves both endochondral and intramembranous 
ossification (Einhom, 1998), and the avB3 receptor may 
have a role in facilitating the response of specific 
regulatory growth factors. Determination of this role will 
require further studies on the co-localization of integrin 
receptors and growth factors, and the role of integrin 
binding on growth factor receptor activation in cells of 
the osteoblast lineage in normal bone development and 
pathologic states. 

Non integrin cell adheslon molecules 

Cadherins 

Osteoblasts and bone lining cells form gap and cell 
junctions of the adherens type with each other and with 
the osteocytes (Doty, 1981; Palumbo et al., 1990). The 
cadherins are amongst the best characterised cell-cell 
adhesion molecules (Takeichi, 1998), are localised to 
sites of inter-cellular attachment and may, therefore, 
contribute to the attachment apparatus. A considerable 
number have been cloned (Isacke and Horton, 2000) and 
most tissues express severa1 but not al1 cadherin types. 
Structurally, they are transmembrane glycoproteins 
involved in calcium dependent homotypic cell-cell 
adhesion. They are composed of an extracellular domain 
of repeated cadherin motifs which interact with 
cadherins on adjacent cells, a transmembrane domain 
and a highly conserved cytoplasmic domain. The latter 
associates indirectly with the actin cytoskeleton through 
the catenin family of proteins and is involved in signal 
transduction (reviewed by Takeichi, 1995). 

Cells of the osteoblast lineage express a limited 
repertoire of cadherins including N-cadherin, cadherin-4 
and cadherin-11 (Okazaki et al., 1994; Tanihara et al., 
1994; Cheng et al., 1998; Ferrari et al., 2000). Primary 
human osteoblasts and bone marrow precursor cells 
express cadherin-11 and N-cadherin in vitro (Cheng 
et al., 1998). However, N-cadherin has been 
histochemically localised to well-differentiated 
osteoblasts lining the bone surface, but not osteocytes, in 
foetal rat calvaria. Blocking N-cadherin binding 
decreased bone nodule formation in vitro (Ferrari et al., 
2000). There is also evidence that bone marrow stromal 
cells together with some human transformed osteoblast- 
like cell lines express cadherin-6 (Mbalaviele et al., 
1998). Cadherin-11, alternatively termed osteoblast (OB) 
cadherin, has 3 isoforms, an intact form which shares 
50% homology with N-cadherin, a variant form resulting 
from alternate splicing and a secreted form which arises 
from proteolysis of the intact molecule (Kawaguchi et 

al., 1999). The variant form shows no homophilic cell- 
cell adhesion properties, although it may assist in the 
adhesion of the intact form if both are co-expressed. 

The biological significance of cadherin mediated 
cell-cell interactions in bone remains largely unexplored. 
However there is  evidence that cadherins function 
synergistically with other cell adhesion molecules to 
influence cell behaviour. They may, for example, 
modulate the function of connexins, proteins associated 
with gap junction function (Jongen et al., 1991; Meyer et 
al., 1992) and osteoblasts are known to communicate via 
such mechanisms (Yellowley et al., 2000). In common 
with other cell systems, variations in cadherin expression 
have been observed in association with malignancy. 
Reduced N-cadherin and anomalous cadherin 11 
expression have been associated with high grade 
metastatic osteosarcomas (Kashima et al., 1999), 
suggesting an important role for these molecules in 
intercellular adhesion. 

CD 44 is a multifunctional cell surface glycoprotein 
that binds to hyaluronic acid, collagen types 1 and IV 
and fibronectin. Immunohistochemical studies using 
several antibodies on both frozen and formaldehyde- 
fixed, paraffin-embedded decalcified sections of human 
tissue showed CD 44 expression in osteocytes but not 
osteoblasts or bone lining cells (Hughes et al., 1994). 
This is consistent with other mammalian models in 
which strong expression has been observed in osteocytes 
with rather weaker staining in cells earlier in the 
osteoblast lineage (Nakamura et al., 1995; Noonan et al. 
1996). The functional significance of CD 44 expression 
is unknown. However, the restriction of its expression to 
osteocytes points to an important role in cell-matrix 
interactions associated with bone homeostasis in the 
adult. 

lmmunoglobulin superfamily 

Although sparse, there is data relating to expression 
of members of this family by osteoblasts and related 
cells. ICAM-1 and -2, VCAM-1 and LFA-3 expression 
has been reported in human bone cells (Tanaka et al., 
1995; Bruder et al., 1998a). Expression of activated 
leucocyte cell adhesion molecule (ALCAM) has been 
reported in undifferentiated human mesenchymal cells 
and may have a functional role in osteoblast 
differentiation (Bruder et al., 1998a,b). 

Selectins 

There is, as yet, little information on the expression 
of members of the selectin family in osteoblasts. 
However, there is evidence for L-selectin expression by 
human mesenchymal stem cells (Bruder et al., 1998a) 
but not E- or P-selectin. These molecules are normally 
associated with leucocyte trafficking across endothelial 
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membranes and it has been suggested they have a 
putative role in the extravasation of osteoblast precursors 
(Helfrich and Horton, 1999). 

Syndecans 

The Syndecans are a family of membrane bound 
heparan sulphate proteoglycans. Expression is normally 
associated with cartilage, but syndecans -1, -2 and -4 
have been identified in human marrow stromal and 
osteoblast-like cells in vivo and in vitro (Birch and 
Skerry, 1999; Schofield et al., 1999). Studies using a rat 
organ culture model demonstrated co-incident 
expression of syndecans -2 and -4 with fibroblast growth 
factor receptors -1, -2 and -3 in vitro and a similar 
spatio-temporal expression in vivo (Molteni et al., 1999). 
This suggests a role for members of the syndecan family 
in the presentation of growth factors during skeletal 
development but this remains to be investigated. 

Concluding comments 

Cells of the osteoblast lineage express a wide array 
of cell adhesion molecules. As in other systems, these 
provide a conduit for the transmission of signals from 
the extracellular environment to the cell. However, there 
is still no clear consensus as to which cell adhesion 
molecules are expressed by cells of the osteoblast 
lineage, or whether cells at progressive stages of 
differentiation show different patterns of expression. 
Nevertheless, trends are emerging (Fig. 1). Integrins 
binding laminin or showing a greater affinity for 
collagen type IV are features of mesenchymal 
osteoblastic progenitors whilst osteocytes show reduced 
integrin expression and increased expression of the 
CD44 hyaluronan receptor. More expression data is 
needed and the functional significance of these 
obsewations requires further investigation. 

Osteoblast-matrix interactions may turn out to be of 
considerable significance in understanding human 
skeletal diseases. Severa1 conditions are characterised by 
abnormalities in the extra-cellular matrix and 
osteosynthetic activity. In osteogenesis imperfecta there 
are abnormalities of the bone matrix and osteoblast 
function (Rauch et al., 2000), whilst in Pagets disease of 
bone, disturbances of both collagenous and non 
collagenous matrix proteins have been reported, and that 
formed is reminiscent of foetal rather than the lamellar 
bone found in the adult (Robey and Bianco, 1999). 
Complex genetic factors are determinants of fracture risk 
(Deng et al., 2000; Nguyen and Eisman, 2000) and it is 
possible that the effect of these is due to subtle 
abnormalities of the bone matrix. It would not be 
surprising, therefore, if, in some of these situations, 
altered signaling behveen the matrix and the cell did not 
influence osteoblast behavior. Elucidation of the role of 
cell-matrix interactions in the aetiology of skeletal 
disease will, therefore, remain a research challenge for 
the foreseeable future. 
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